
XL

C/C++

Advanced

Edition

for

Mac

OS

X

Getting

Started

with

XL

C/C++

for

Mac

OS

X

Version

6.0

SC09-7859-00

���

XL

C/C++

Advanced

Edition

for

Mac

OS

X

Getting

Started

with

XL

C/C++

for

Mac

OS

X

Version

6.0

SC09-7859-00

���

Note:

Before

using

this

information

and

the

product

it

supports,

be

sure

to

read

the

information

in

“Notices”

on

page

61.

First

Edition

(December,

2003)

This

edition

applies

to

Version

6,

Release

0,

Modification

0

of

XL

C/C++

Advanced

Edition

Version

6.0

for

Mac

OS

X

(product

number

5724–G12)

and

to

all

subsequent

releases

and

modifications

until

otherwise

indicated

in

new

editions.

IBM

welcomes

your

comments.

You

can

send

them

by

the

Internet

to

the

following

address:

compinfo@ca.ibm.com

Include

the

title

and

order

number

of

this

book,

and

the

page

number

or

topic

related

to

your

comment.

Be

sure

to

include

your

e-mail

address

if

you

want

a

reply.

When

you

send

information

to

IBM,

you

grant

IBM

a

nonexclusive

right

to

use

or

distribute

the

information

in

any

way

it

believes

appropriate

without

incurring

any

obligation

to

you.

©

Copyright

International

Business

Machines

Corporation

2003.

All

rights

reserved.

US

Government

Users

Restricted

Rights

–

Use,

duplication

or

disclosure

restricted

by

GSA

ADP

Schedule

Contract

with

IBM

Corp.

Contents

About

this

book

.

.

.

.

.

.

.

.

.

.

. v

Highlighting

conventions

.

.

.

.

.

.

.

.

.

. v

How

to

read

the

syntax

diagrams

.

.

.

.

.

.

. v

XL

C/C++

for

Mac

OS

X

Overview

.

.

.

. 1

Libraries

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 2

Utilities

and

commands

.

.

.

.

.

.

.

.

.

.

. 2

Documentation

and

online

help

.

.

.

.

.

.

.

. 3

Installing

XL

C/C++

for

Mac

OS

X

.

.

.

. 5

System

requirements

.

.

.

.

.

.

.

.

.

.

.

. 5

Prerequisite

tasks

and

conditions

.

.

.

.

.

.

. 6

Installation

procedures

for

XL

C/C++

for

Mac

OS

X

7

Installing

through

the

GUI

.

.

.

.

.

.

.

.

. 7

Command-line

installation

.

.

.

.

.

.

.

.

. 8

Enabling

the

compiler

man

pages

.

.

.

.

.

. 9

Viewing

the

product

documentation

.

.

.

.

. 10

Configure

the

compiler

.

.

.

.

.

.

.

.

.

. 10

Setting

the

correct

NLSPATH

.

.

.

.

.

.

.

. 11

Uninstalling

XL

C/C++

for

Mac

OS

X

.

.

.

.

. 12

Testing

the

installation

.

.

.

.

.

.

.

.

.

.

. 13

Building

Hello

World

in

C

and

C++

.

.

.

.

. 13

Hello

World

with

vector

programming

.

.

.

. 14

Using

the

compiler

for

the

first

time

.

.

.

.

.

. 15

Customizing

the

compilation

environment

.

.

.

.

.

.

.

.

.

.

.

. 17

Environment

variables

.

.

.

.

.

.

.

.

.

.

. 17

Create

symbolic

links

for

the

PATH

.

.

.

.

. 17

Ensuring

the

correct

NLSPATH

.

.

.

.

.

.

. 18

Include

files

.

.

.

.

.

.

.

.

.

.

.

.

.

. 18

Configuration

files

.

.

.

.

.

.

.

.

.

.

.

. 18

The

vacpp_configure

utility

.

.

.

.

.

.

.

. 19

Command-line

options

.

.

.

.

.

.

.

.

.

. 21

Using

XL

C/C++

with

Xcode

and

Project

Builder

.

. 22

Configure

the

Xcode

IDE

.

.

.

.

.

.

.

.

. 22

Using

Project

Builder

with

XL

C/C++

.

.

.

. 23

Controlling

the

compilation

process

.

. 25

Invoking

the

compiler

.

.

.

.

.

.

.

.

.

.

. 25

Types

of

input

and

output

files

.

.

.

.

.

.

.

. 26

Default

behavior

.

.

.

.

.

.

.

.

.

.

.

.

. 26

Getting

started

with

compiler

options

29

Compiler

messages

.

.

.

.

.

.

.

.

.

.

.

. 29

Return

codes

.

.

.

.

.

.

.

.

.

.

.

.

. 30

Compiler

message

format

.

.

.

.

.

.

.

. 30

Platform-specific

options

.

.

.

.

.

.

.

.

.

. 31

Reusing

GNU

C

and

C++

compiler

options

with

gxlc

and

gxlc++

.

.

.

.

.

.

.

.

.

.

.

.

. 32

gxlc

and

gxlc++

syntax

.

.

.

.

.

.

.

.

. 32

GNU

C

and

C++

to

XL

C/C++

option

mapping

33

Configuring

the

option

mapping

.

.

.

.

.

. 36

Options

summary:

C

compiler

.

.

.

.

.

.

.

. 38

Basic

translation

.

.

.

.

.

.

.

.

.

.

.

. 38

Special

handling

and

control

.

.

.

.

.

.

. 39

Linking

and

library-related

options

.

.

.

.

. 40

Options

summary:

C++

compiler

.

.

.

.

.

.

. 40

Getting

started

with

optimization

.

.

. 41

Optimization

levels

.

.

.

.

.

.

.

.

.

.

.

. 42

Optimizing

for

a

particular

processor

architecture:

target

machine

options

.

.

.

.

.

.

.

.

.

. 42

Getting

the

most

out

of

target

machine

options

42

Optimization

level

-O2

.

.

.

.

.

.

.

.

.

. 43

Optimization

level

-O3

.

.

.

.

.

.

.

.

.

. 44

Getting

the

most

out

of

-O2

and

-O3

.

.

.

.

. 44

High-order

transformations

(-qhot)

.

.

.

.

.

. 44

Getting

the

most

out

of

-qhot

.

.

.

.

.

.

. 45

Interprocedural

analysis

(-qipa)

.

.

.

.

.

.

.

. 45

Getting

the

most

from

-qipa

.

.

.

.

.

.

.

. 46

The

-O4

and

-O5

macro

options

.

.

.

.

.

.

. 46

Other

program

behavior

options

.

.

.

.

.

.

. 47

Diagnostic

options

.

.

.

.

.

.

.

.

.

.

.

. 47

Profile-directed

feedback

(PDF)

.

.

.

.

.

.

.

. 48

Other

performance

options

.

.

.

.

.

.

.

.

. 49

Floating-point

options

.

.

.

.

.

.

.

.

.

.

. 49

Compiler-friendly

programming

.

.

.

.

.

.

. 50

Options

summary:

optimization

and

performance

50

Porting

considerations

.

.

.

.

.

.

.

. 53

Features

related

to

GNU

C

and

C++

portability

.

. 54

GCC

function

attributes

.

.

.

.

.

.

.

.

. 54

GCC

variable

attributes

.

.

.

.

.

.

.

.

. 55

GNU

C

and

C++

type

attributes

.

.

.

.

.

. 55

GNU

C

and

C++

assertions

.

.

.

.

.

.

.

. 56

Other

extensions

related

to

GNU

C

and

C++

.

. 56

Appendix.

Language

support

.

.

.

.

. 57

ISO/IEC

14882:1998

International

Standard

compatibility

.

.

.

.

.

.

.

.

.

.

.

.

.

. 57

ISO/IEC

9899:1990

International

Standard

compatibility

.

.

.

.

.

.

.

.

.

.

.

.

.

. 57

ISO/IEC

9899:1999

International

Standard

support

57

Major

features

in

C99

.

.

.

.

.

.

.

.

.

. 58

Changes

and

clarifications

of

C89

supported

in

C99

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 58

C99

features

in

XL

C/C++

.

.

.

.

.

.

.

. 59

Enhanced

language

level

support

.

.

.

.

.

.

. 60

Notices

.

.

.

.

.

.

.

.

.

.

.

.

.

. 61

Programming

Interface

Information

.

.

.

.

.

. 63

Trademarks

and

Service

Marks

.

.

.

.

.

.

.

. 63

Industry

Standards

.

.

.

.

.

.

.

.

.

.

.

. 63

©

Copyright

IBM

Corp.

2003

iii

iv

Introduction

and

Installation

Guide

About

this

book

XL

C/C++

Advanced

Edition

Version

6.0

for

Mac

OS

X

is

an

optimizing,

standards-based,

command-line

compiler

for

the

Mac

OS

X

operating

system

running

on

the

PowerPC®

architecture.

The

compiler

is

a

professional

programming

tool

for

creating

and

maintaining

32-bit

applications

in

the

extended

C

and

C++

programming

languages.

This

book

introduces

you

to

the

XL

C/C++

for

Mac

OS

X

compiler.

It

contains

instructions

for

installing

and

setting

up

the

compilation

environment.

Testing

the

installation

by

compiling

a

Hello

World

application

provides

an

introduction

to

invoking

the

compiler

and

controlling

the

compilation

process

through

compiler

options.

This

book

also

describes

the

types

of

transformations

the

compiler

can

perform,

the

accepted

file

types

for

input

and

output,

and

general

advice

for

porting

an

existing

application.

This

book

also

provides

an

introduction

to

optimizing

the

performance

of

your

applications.

It

delineates

ways

to

exercise

the

capabilities

of

the

compiler

to

exploit

the

multilayered

architecture

of

the

PowerPC

processor.

If

you

are

porting

an

application

previously

developed

with

IBM

C

for

AIX,

VisualAge

C++

Professional

for

AIX,

or

VisualAge

C++

for

Linux,

your

makefiles

can

be

adapted

to

work

on

the

Mac

OS

X

platform.

If

you

are

new

to

the

XL

C/C++

compiler,

this

book

can

open

a

path

to

improved

performance

during

compile,

link,

and

run

time.

This

document

assumes

that

you

are

familiar

with

the

C

and

C++

programming

languages,

the

Mac

OS

X

operating

system,

the

TENEX

C

shell

(tcsh),

and

the

Bourne-Again

shell

(bash).

Highlighting

conventions

Bold

Identifies

commands,

keywords,

files,

directories,

and

other

items

whose

names

are

predefined

by

the

system.

Italics

Identify

parameters

whose

actual

names

or

values

are

to

be

supplied

by

the

programmer.

Italics

are

also

used

for

the

first

mention

of

new

terms.

Example

Identifies

examples

of

specific

data

values,

examples

of

text

similar

to

what

you

might

see

displayed,

examples

of

portions

of

program

code,

messages

from

the

system,

or

information

that

you

should

actually

type.

Examples

are

intended

to

be

instructional

and

do

not

attempt

to

minimize

run

time,

conserve

storage,

or

check

for

errors.

The

examples

do

not

demonstrate

all

of

the

possible

uses

of

the

language

constructs.

Some

examples

are

only

code

fragments

and

will

not

compile

without

additional

code.

How

to

read

the

syntax

diagrams

v

Read

the

syntax

diagrams

from

left

to

right,

from

top

to

bottom,

following

the

path

of

the

line.

The

��───

symbol

indicates

the

beginning

of

a

command,

directive,

or

statement.

©

Copyright

IBM

Corp.

2003

v

The

───�

symbol

indicates

that

the

command,

directive,

or

statement

syntax

is

continued

on

the

next

line.

The

�───

symbol

indicates

that

a

command,

directive,

or

statement

is

continued

from

the

previous

line.

The

───��

symbol

indicates

the

end

of

a

command,

directive,

or

statement.

Diagrams

of

syntactical

units

other

than

complete

commands,

directives,

or

statements

start

with

the

�───

symbol

and

end

with

the

───�

symbol.

Note:

In

the

following

diagrams,

statement

represents

a

C

or

C++

C

command,

directive,

or

statement.

v

Required

items

appear

on

the

horizontal

line

(the

main

path).

��

statement

required_item

��

v

Optional

items

appear

below

the

main

path.

��

statement

optional_item

��

v

If

you

can

choose

from

two

or

more

items,

they

appear

vertically,

in

a

stack.

If

you

must

choose

one

of

the

items,

one

item

of

the

stack

appears

on

the

main

path.

��

statement

required_choice1

required_choice2

��

If

choosing

one

of

the

items

is

optional,

the

entire

stack

appears

below

the

main

path.

��

statement

optional_choice1

optional_choice2

��

The

item

that

is

the

default

appears

above

the

main

path.

��

statement

default_item

alternate_item

��

v

An

arrow

returning

to

the

left

above

the

main

line

indicates

an

item

that

can

be

repeated.

��

statement

�

repeatable_item

��

A

repeat

arrow

above

a

stack

indicates

that

you

can

make

more

than

one

choice

from

the

stacked

items,

or

repeat

a

single

choice.

v

Keywords

appear

in

nonitalic

letters

and

should

be

entered

exactly

as

shown

(for

example,

extern).

Variables

appear

in

italicized

lowercase

letters

(for

example,

identifier).

They

represent

user-supplied

names

or

values.

v

If

punctuation

marks,

parentheses,

arithmetic

operators,

or

other

such

symbols

are

shown,

you

must

enter

them

as

part

of

the

syntax.

Reading

the

Syntax

Diagrams

vi

Introduction

and

Installation

Guide

The

following

syntax

diagram

example

shows

the

syntax

for

the

#pragma

comment

directive.

See

XL

C/C++

for

Mac

OS

X

C/C++

Language

Reference

for

information

on

the

#pragma

directive.

�1�

This

is

the

start

of

the

syntax

diagram.

�2�

The

symbol

#

must

appear

first.

�3�

The

keyword

pragma

must

appear

following

the

#

symbol.

�4�

The

name

of

the

pragma

comment

must

appear

following

the

keyword

pragma.

�5�

An

opening

parenthesis

must

be

present.

�6�

The

comment

type

must

be

entered

only

as

one

of

the

types

indicated:

compiler,

date,

timestamp,

copyright,

or

user.

�7�

A

comma

must

appear

between

the

comment

type

copyright

or

user,

and

an

optional

character

string.

�8�

A

character

string

must

follow

the

comma.

The

character

string

must

be

enclosed

in

double

quotation

marks.

�9�

A

closing

parenthesis

is

required.

�10�

This

is

the

end

of

the

syntax

diagram.

The

following

examples

of

the

#pragma

comment

directive

are

syntactically

correct

according

to

the

diagram

shown

above:

#pragma

comment(date)

#pragma

comment(user)

#pragma

comment(copyright,"This

text

will

appear

in

the

module")

�1�

�2�

�3�

�4�

�5�

�6�

�9�

�10�

��─#──pragma──comment──(─┬─────compiler────────────────────────┬──)─��

│

│

├─────date────────────────────────────┤

│

│

├─────timestamp───────────────────────┤

│

│

└──┬──copyright──┬──┬─────────────────┤

│

│

│

│

└──user───────┘

└──,─"characters"─┘

�7�

�8�

Reading

the

Syntax

Diagrams

About

this

book

vii

Reading

the

Syntax

Diagrams

viii

Introduction

and

Installation

Guide

XL

C/C++

for

Mac

OS

X

Overview

XL

C/C++

Advanced

Edition

Version

6.0

for

Mac

OS

X

is

an

optimizing,

standards-based,

command-line

compiler

for

the

Mac

OS

X

operating

system,

running

on

PowerPC

hardware

with

the

PowerPC

architecture.

XL

C/C++

for

Mac

OS

X

uses

the

Mac

OS

X,

GNU

C,

and

GNU

C++

header

files

and

the

GNU

C

and

C++

run-time

libraries

to

produce

code

that

is

binary

compatible

with

that

produced

with

the

GNU

compiler,

gcc

Version

3.3.

Portions

of

an

application

can

be

built

with

XL

C/C++

for

Mac

OS

X

and

combined

with

portions

built

with

gcc

to

produce

an

application

that

behaves

as

if

it

had

been

built

solely

with

gcc.

To

ensure

that

the

proper

versions

of

headers

and

run-time

libraries

are

present

on

the

system,

the

gcc

3.3

compiler

must

be

installed

before

installing

XL

C/C++

Advanced

Edition

Version

6.0

for

Mac

OS

X.

The

compiler

enables

application

developers

to

create

and

maintain

optimized

32-bit

applications

for

the

Mac

OS

X

platform.

The

compiler

brings

to

the

Mac

OS

X

platform

the

flexibility,

features,

and

refinements

that

evolved

from

its

releases

for

the

AIX

operating

system

and

the

Linux

platform.

The

compiler

accommodates

a

wide

range

of

program

subtleties,

often

without

requiring

significant

amounts

of

rework.

These

advantages

are

now

available

to

Macintosh

application

developers

because

of

the

underlying

UNIX

operating

system

of

the

Mac

OS

X

platform.

With

the

addition

of

language

extensions

to

support

the

Motorola

AltiVec

Programming

Interface

and

the

Apple

Velocity

Engine,

the

compiler

offers

a

diversified

portfolio

of

optimization

techniques

tailored

for

the

PowerPC

970

architecture.

XL

C/C++

Advanced

Edition

Version

6.0

for

Mac

OS

X

can

be

used

for

large,

complex,

and

computationally

intensive

programs.

It

supports

interlanguage

calls

with

XL

Fortran.

For

applications

that

require

SIMD

(single-instruction,

multiple

data)

parallel

processing,

performance

improvements

can

be

achieved

through

traditional

optimization

techniques,

which

may

be

less

labor-intensive

than

vector

programming.

Many

of

the

optimizations

developed

by

IBM

are

controlled

by

compiler

options,

pragmas,

or

compiler

invocation

mode.

Source

compatibility

The

compiler

supports

the

two

ISO

programming

language

specifications

for

C:

ISO/IEC

9899:1990

(referred

to

as

C89)

and

ISO/IEC

9899:1999

(C99).

Certain

features

specified

in

the

C99

Standard

require

corresponding

run-time

library

support,

which

may

not

be

available

in

the

current

operating

system

release.

In

addition,

the

compiler

implements

extensions

to

the

C

language,

which

include

a

subset

of

the

GNU

C

language

extensions

and

the

language

extensions

necessary

to

support

AltiVec

vector

programming.

The

compiler

supports

Standard

C++,

which

is

the

programming

language

described

in

the

international

standard

ISO/IEC

14882:1998(E)

and

based

on

C89.

The

compiler

also

implements

extensions

to

Standard

C++

for

compatibility

with

XL

C

and

selected

features

of

C99

and

g++.

Command

line

compatibility

©

Copyright

IBM

Corp.

2003

1

XL

C/C++

for

Mac

OS

X

supports

a

subset

of

the

GNU

compiler

command

options

to

facilitate

porting

applications

developed

with

gcc

and

g++.

This

support

is

available

when

the

gxlc

or

gxlc++

invocation

command

is

used.

Coexistence

with

open

source

resources

To

achieve

binary

compatibility

with

gcc-compiled

code,

a

program

compiled

with

XL

C/C++

for

Mac

OS

X

includes

the

same

headers

as

those

used

by

a

GNU

compiler

residing

on

the

same

system.

The

compiler

optimizes

the

program

while

maintaining

binary

compatibility

with

objects

produced

by

gcc

Version

3.3.

Some

noteworthy

points

about

this

relationship

are:

v

IBM

built-in

functions

for

PowerPC

processors

coexist

with

GNU

C

built-ins.

v

Compilation

of

C

and

C++

programs

uses

the

GNU

C,

GNU

C++,

and

Mac

OS

X

header

files.

v

Compilation

uses

the

GNU

assembler

for

assembler

input

files.

v

Linking

uses

the

Mac

OS

X

linker.

v

Compiled

code

is

linked

to

the

GNU

C

and

Mac

OS

X

run-time

libraries.

v

Compiled

C++

code

is

linked

to

the

GNU

C,

GNU

C++,

and

Mac

OS

X

run-time

libraries.

v

Debugging

uses

the

GNU

debugger,

gdb.

National

Language

Support

The

compiler

can

be

used

to

create

and

maintain

applications

that

require

multibyte

characters

or

Unicode

support.

Libraries

The

compiler

uses

the

GNU

C

and

C++

headers,

and

the

resulting

application

is

linked

with

the

C

and

C++

run-time

libraries

provided

with

gcc

Version

3.3.

IBM

implementations

of

some

C

header

files,

such

as

stdarg.h

and

varargs.h,

ship

with

the

product

and

override

the

corresponding

gcc

header

files.

These

implementations

are

functionally

equivalent

to

the

corresponding

GNU

C

implementations.

Other

IBM

headers

are

wrappers

that

include

some

gcc

header

files.

The

header

files

wchar.h,

wctype.h,

and

iso646.h

may

not

be

available

at

certain

release

levels

of

the

C

run-time

library

provided

with

gcc.

XL

C/C++

provides

versions

of

these

header

files,

which

are

used

if

they

are

not

otherwise

present

on

the

system.

In

this

case,

specifying

the

macro

-D_XLC_WC_H

with

the

compiler

invocation

will

suppress

the

diagnostic

messages

related

to

the

use

of

the

XL

C/C++

versions.

However,

the

header

files

provided

by

the

system

C

run-time

library

should

always

be

used

if

they

are

available.

Utilities

and

commands

XL

C/C++

Advanced

Edition

Version

6.0

for

Mac

OS

X

provides

the

following

specialized

commands

to

aid

program

development.

For

more

information,

refer

to

XL

C/C++

for

Mac

OS

X

Compiler

Reference.

vacpp_configure

Utility

A

program

that

creates

the

configuration

file

vac.cfg,

which

specifies

the

location

of

the

GNU

compiler

and

other

configuration

information.

The

IBM

C

and

C++

compilers

both

use

vac.cfg

for

their

configuration.

2

Introduction

and

Installation

Guide

cleanpdf

Command

A

command

related

to

profile-directed

feedback

used

for

managing

the

PDFDIR

directory.

Removes

all

profiling

information

from

the

specified,

PDFDIR,

or

current

directory.

resetpdf

Command

Current

behavior

is

the

same

as

the

cleanpdf

command.

The

command

is

retained

for

compatibility

with

earlier

releases

on

other

platforms.

gxlc

and

gxlc++

Utilities

Invocation

methods

that

translate

a

GNU

C

or

GNU

C++

invocation

command

into

a

corresponding

xlc

or

xlc++

command

and

invoke

the

XL

C/C++

compiler.

The

purpose

of

these

utilities

is

to

minimize

the

number

of

changes

to

makefiles

used

for

existing

applications

built

with

the

GNU

compilers

and

to

facilitate

the

transition

to

XL

C/C++.

Documentation

and

online

help

XL

C/C++

Advanced

Edition

Version

6.0

for

Mac

OS

X

provides

product

documentation

in

the

following

formats:

v

Readme

files

v

Man

pages

v

HTML

files

v

PDF

documents

By

default,

the

PDF

documents

are

installed

in

the

/opt/ibmcmp/vacpp/6.0/doc/en_US/pdf

directory.

In

addition

to

this

guide,

XL

C/C++

for

Mac

OS

X

provides

the

following

PDF

documents:

XL

C/C++

for

Mac

OS

X

C/C++

Language

Reference

(language.pdf)

Contains

information

about

the

C

and

C++

programming

languages,

as

supported

by

IBM,

including

language

extensions

for

portability

and

conformance

to

non-proprietary

standards.

XL

C/C++

for

Mac

OS

X

Compiler

Reference

(compiler.pdf)

Contains

information

about

the

various

compiler

options,

pragmas,

macros,

and

built-in

functions,

including

those

used

for

parallel

processing.

XL

C/C++

for

Mac

OS

X

Programming

Tasks

(proguide.pdf)

Contains

information

about

programming

using

XL

C/C++

for

Mac

OS

X

not

covered

in

other

publications.

The

HTML

version

of

the

documentation

is

searchable

as

part

of

the

Apple

Help

Center.

To

display

the

HTML

files,

select

Help

from

the

Task

bar.

Then

select

Mac

Help

>

IBM

XL

C/C++

Compiler.

XL

C/C++

for

Mac

OS

X

Overview

3

4

Introduction

and

Installation

Guide

Installing

XL

C/C++

for

Mac

OS

X

XL

C/C++

for

Mac

OS

X

is

a

command-line

application

that

installs

from

CD-ROM

or

from

a

downloadable

disk

image

(.dmg).

The

installation

procedures

are

the

same

for

single-

or

multiuser

environments.

Both

XL

C

and

C++

compilers

are

contained

in

the

metapackage

vacpp.cmp.mpkg,

which

can

be

installed

through

the

GUI

or

from

the

command

line,

using

the

Mac

OS

X

Installer.app

utility.

Prior

to

installation,

you

can

get

more

information

on

the

metapackage

by

issuing

the

following

command:

/usr/sbin/installer

-pkg

vacpp.cmp.mpkg

-pkginfo

-verbose

Installation

from

the

GUI

allows

you

to

install

the

compiler

in

any

directory.

A

command-line

installation

installs

the

C

compiler

in

the

default

location,

the

/opt/ibmcmp/vac/6.0

directory,

and

the

C++

compiler

in

the

default

location,

the

/opt/ibmcmp/vacpp/6.0

directory.

The

directory

where

the

compiler

is

installed

is

referred

to

as

the

root

path

or

base

relocation.

XL

C/C++

for

Mac

OS

X

uses

the

GNU

C

and

C++

header

files

and

run-time

libraries

to

produce

code

that

is

binary

compatible

with

that

produced

with

the

GNU

compiler,

gcc

Version

3.3.

To

ensure

that

the

proper

versions

of

headers

and

run-time

libraries

are

present

on

the

system,

gcc

3.3

must

be

installed

before

installing

XL

C/C++

for

Mac

OS

X.

XL

C/C++

for

Mac

OS

X

must

therefore

be

configured

so

that

it

can

find

a

GNU

compiler,

header

files,

and

libraries

(including

crt.o

files),

regardless

of

its

base

relocation.

The

installation

program

attempts

to

create

the

default

configuration

file

/etc/opt/ibmcmp/vac/6.0/vac.cfg

automatically

if

all

prerequisites

have

been

installed.

The

initial

configuration

can

also

be

handled

by

manually

running

one

of

the

related

convenience

tools:

the

new_install

command

or

the

vacpp_configure

utility.

Both

have

the

ability

to

create

the

default

configuration

file.

The

default

configuration

file

can

subsequently

be

modified

by

rerunning

the

vacpp_configure

utility

with

different

options.

Alternatively,

for

temporary

changes

to

the

vacpp_configure

settings,

you

can

override

each

setting

through

a

command-line

option,

or

you

can

use

a

different

configuration

file

by

compiling

with

the

-F

option

and

specifying

a

particular

configuration

file

as

the

argument

to

the

option.

See

XL

C/C++

for

Mac

OS

X

Compiler

Reference

for

more

information.

System

requirements

Operating

system

Mac

OS

X,

Version

10.2

or

10.3

Hardware

Power

Mac

G4

or

G5

The

compiler,

its

generated

object

programs,

and

run-time

library

run

on

Apple

Power

Mac

G4

or

G5

systems

with

the

required

software

and

disk

space.

To

take

maximum

advantage

of

different

hardware

configurations,

the

compiler

provides

a

number

of

options

for

performance

tuning

based

on

the

configuration

of

the

machine

used

for

executing

an

application.

However,

the

compiler

Scheduler

models

only

the

G5

architecture

and

does

not

optimally

exploit

the

G4

architecture.

©

Copyright

IBM

Corp.

2003

5

Disk

space

At

least

150

MB

for

product

packages.

At

least

200

MB

(recommended)

to

accommodate

high

levels

of

optimization,

which

may

require

significant

amounts

of

additional

paging

and

temporary

disk

space.

Required

software

The

Mac

OS

X

Developer

Tools

package,

which

includes

gcc

Version

3.3.

The

package

is

available

from

the

Apple

Developer

Connection

Member

Site

at

http://connect.apple.com/

.

For

Mac

OS

X

10.2,

the

upgrade

to

gcc

Version

3.3

requires

installation

of

the

Apple

package

August2003gccUpdater.pkg.

For

Mac

OS

X

10.3

(Panther),

Xcode

Tools

v1.0

or

later

is

required.

Prerequisite

tasks

and

conditions

The

compiler

requires

at

least

one

instance

of

gcc

Version

3.3

on

the

system.

You

will

need

to

provide

its

location

if

you

have

to

manually

configure

XL

C/C++

after

installation.

A

installation

of

all

packages

requires

at

least

150

MB

of

disk

space.

However,

compiling

at

higher

levels

of

optimization

may

require

large

amounts

of

temporary

disk

space.

The

recommended

amount

of

temporary

disk

space

is

a

minimum

of

200

MB.

You

must

remove

any

beta

version

of

the

C

or

C++

compiler

from

your

system.

The

prerequisite

tasks

for

a

first-time

installation

are:

1.

Upgrade

to

gcc

Version

3.3

from

the

Mac

OS

X

Developer

Tools

CD-ROM

or

from

the

Apple

Developer

Connection

Member

Site

at

http://connect.apple.com.

For

Mac

OS

X

10.2,

the

upgrade

to

gcc

Version

3.3

requires

installation

of

the

Apple

package

August2003gccUpdater.pkg.

For

Mac

OS

X

10.3

(Panther),

Xcode

Tools

v1.0

or

later

is

required.

XL

C/C++

for

Mac

OS

X

does

not

require

the

gcc

executable

to

be

in

a

particular

location.

When

you

configure

XL

C/C++

for

Mac

OS

X

before

first

use,

you

save

the

location

of

the

gcc

compiler

on

which

XL

C/C++

for

Mac

OS

X

relies,

in

the

XL

C/C++

configuration

file.

2.

Verify

that

you

have

sufficient

space.

The

following

command

queries

the

volumes

into

which

you

intend

to

install

the

compiler

package.

/usr/sbin/installer

-pkg

absolute_path/vacpp.cmp.mpkg

-volinfo

-verbose

where

absolute_path

is

the

absolute

path

to

the

metapackage.

Installation

procedures

for

XL

C/C++

for

Mac

OS

X

The

GUI

installation

uses

Installer.app,

an

application

that

installs

with

the

operating

system.

A

GUI

installation

allows

you

to

specify

both

the

volume

and

base

relocation

for

the

compilers.

The

installation

program

enables

permissions

on

the

relocation

directory

for

all

users.

A

command-line

installation

allows

you

to

specify

only

the

volume,

and

uses

the

default

installation

locations.

The

high-level

steps

are

the

same

for

either

type

of

installation.

These

steps

are

as

follows:

1.

Become

the

root

user

or

a

user

with

administrator

privileges.

2.

Mount

the

destination

volume

for

the

compiler

installation.

6

Introduction

and

Installation

Guide

3.

Install

the

packages.

4.

Configure

the

compiler.

This

means

checking

for

the

existence

of

the

default

configuration

file

for

the

compiler.

If

none

was

created

automatically

by

the

installation

program,

create

it

by

running

either

the

new_install

command

or

the

vacpp_configure

utility.

5.

Ensure

that

the

NLSPATH

includes

search

paths

for

any

relocated

run-time

message

catalogs.

6.

Test

the

installation.

The

following

table

lists

the

packages

and

their

prerequisites.

The

packages

in

the

Prerequisites

column

are

presented

in

the

order

in

which

they

must

be

installed.

XL

C++

packages

in

vacpp.cmp.mpkg

Package

name

Prerequisites

Description

xlsmp.msg.rte.pkg

none

SMP

run-time

messages

xlsmp.rte.pkg

xlsmp.msg.rte.pkg

SMP

run-time

dynamic

libraries

xlsmp.lib.pkg

xlsmp.msg.rte.pkg

xlsmp.rte.pkg

SMP

run-time

static

libraries

vac.lic.pkg

none

C

compiler

license

vac.cmp.pkg

gcc

3.3

vac.lic.pkg

xlsmp.msg.rte.pkg

xlsmp.rte.pkg

xlsmp.lib.pkg

The

C

compiler

vac.samples.pkg

none

Example

code

for

the

C

compiler

vacpp.rte.pkg

none

C++

run-time

libraries

vacpp.cmp.pkg

vac.cmp.pkg

The

C++

compiler

vacpp.help.pkg

none

C++

compiler

documentation

vacpp.samples.pkg

none

Example

code

for

the

C++

compiler

Relocatable

packages

You

can

relocate

the

packages

xlsmp.msg.rte.pkg,

xlsmp.rte.pkg,

and

xlsmp.lib.pkg

to

a

directory

different

from

the

default

installation

location.

However,

you

must

use

the

same

directory

for

all

three

packages.

Similarly,

you

can

relocate

the

compiler

packages

vac.cmp.pkg

and

vacpp.cmp.pkg

to

a

directory

different

from

the

original

installation

location.

You

must

use

the

same

directory

for

both

packages.

However,

the

package

for

the

C++

run-time

environment,

vacpp.rte.pkg,

can

be

relocated

independently.

The

packages

vac.lic.pkg,

vac.samples.pkg,

vacpp.samples.pkg,

and

vacpp.help.pkg

are

independent

and

can

be

relocated

to

any

directory

or

directories.

However,

installing

vac.lic.pkg

is

mandatory,

whereas

installing

vac.samples.pkg,

vacpp.samples.pkg,

or

vacpp.help.pkg

is

optional.

Installing

through

the

GUI

A

GUI

installation

allows

you

to

specify

both

the

destination

volume

and

a

nondefault

relocation.

1.

Become

the

root

user

or

a

user

with

administrator

privileges.

Installing

XL

C/C++

for

Mac

OS

X

7

2.

Mount

the

CD-ROM

device.

3.

If

necessary,

mount

the

destination

volume

for

the

compiler

installation.

4.

Locate

the

file

vacpp.cmp.mpkg,

which

is

in

the

packages

directory

of

the

CD-ROM

or

disk

image.

5.

Double-click

the

metapackage

icon.

6.

If

an

Authenticate

window

appears,

enter

the

root

user

ID

and

password,

or

the

user

ID

and

password

of

a

user

with

administrator

privileges.

7.

A

message

tells

you

that

this

Installer

package

needs

to

run

a

program

to

determine

if

it

can

be

installed.

Click

Continue.

8.

An

Introduction

page

appears.

After

reading

it,

click

Continue.

9.

A

Read

Me

page

appears.

After

reading

it,

click

Continue.

10.

The

License

page

appears.

After

reading

it,

click

Continue.

11.

Click

Agree

to

proceed

with

the

installation.

12.

A

Select

Destination

page

appears.

Specify

a

destination

volume.

13.

You

can

specify

the

installation

location.

By

default,

XL

C/C++

installs

the

C

compiler

in

the

following

directory

on

the

specified

volume:

/opt/ibmcmp/vac/6.0

The

C++

compiler

installs

in:

/opt/ibmcmp/vacpp/6.0

To

accept

the

default

relocation,

click

Continue.

To

install

the

product

in

a

different

directory,

click

Choose....

Navigate

to

a

directory

(relocation_path).

On

the

specified

volume,

XL

C/C++

installs

in

the

following

directories:

relocation_path/opt/ibmcmp/vac/6.0

relocation_path/opt/ibmcmp/vacpp/6.0

The

specified

location

will

be

referred

to

as

your

base

relocation.

Both

compilers

must

use

the

same

base

relocation.

14.

An

Installation

Type

page

appears.

To

install

all

packages,

click

Install.

To

install

the

XL

C/C++

packages

selectively,

click

Customize.

Deselect

the

packages

you

do

not

want

to

install

at

this

time,

heeding

any

package

prerequisites.

Click

Install.

15.

A

notification

message

appears,

indicating

that

the

selected

packages

installed

successfully.

Check

to

see

if

the

installation

program

created

the

default

configuration

file

/etc/opt/ibmcmp/vac/6.0/vac.cfg.

To

do

this,

select

File

>

Show

Log

from

the

Installer

menu

bar.

If

the

installation

program

failed

to

create

the

configuration

file,

you

will

need

to

install

any

missing

prerequisites

and

possibly

configure

the

compiler

manually

by

running

new_install

or

vacpp_configure.

16.

Click

Close

to

exit

Installer.

Command-line

installation

A

command-line

installation

allows

you

to

specify

only

the

destination

volume.

The

C

compiler

installs

in

the

default

location

/opt/ibmcmp/vac/6.0.

The

C++

compiler

installs

in

/opt/ibmcmp/vacpp/6.0.

To

install

XL

C/C++

from

the

command

line,

do

the

following:

8

Introduction

and

Installation

Guide

1.

Become

the

root

user

or

a

user

with

administrator

privileges.

2.

Mount

the

destination

volume

for

the

compiler

installation.

3.

Issue

the

following

command:

/usr/sbin/installer

-pkg

absolute_path/vacpp.cmp.mpkg

-target

/

-dumplog

where

absolute_path

is

the

absolute

path

to

the

metapackage.

If

you

are

installing

from

CD-ROM,

the

path

is

/Volumes/CDROM/packages/.

The

-dumplog

option

writes

installation

information

to

the

screen.

4.

Check

the

log

information

to

see

if

the

installation

program

created

the

default

configuration

file

/etc/opt/ibmcmp/vac/6.0/vac.cfg.

If

it

did

not,

you

will

need

to

install

any

missing

prerequisites

and

possibly

configure

the

compiler

manually

by

running

vacpp_configure.

Enabling

the

compiler

man

pages

To

enable

the

XL

C/C++

man

pages

for

the

compiler

invocation

commands

and

other

command-line

utilities,

you

must

add

the

XL

C/C++

man

directory

to

the

beginning

of

the

MANPATH

environment

variable.

You

do

not

need

to

rebuild

the

catman

database

for

the

XL

C/C++

man

pages

to

appear

in

a

man

-k

(whatis)

or

apropos

command.

To

enable

the

XL

C/C++

man

pages,

do

the

following:

1.

Check

the

current

value

of

the

MANPATH

environment

variable:

echo

$MANPATH

2.

If

echo

$MANPATH

does

not

return

a

value,

set

the

MANPATH

environment

variable

to

the

following:

/opt/ibmcmp/vacpp/6.0/man/en_US/man:/usr/share/man

or,

if

you

used

a

relocation,

base_relocation/opt/ibmcmp/vacpp/6.0/man/en_US/man:/usr/share/man

The

system-default

man

pages

use

the

search

path

/usr/share/man,

which

is,

by

default,

hidden.

Otherwise,

if

echo

$MANPATH

returns

a

value,

add

the

path

to

the

XL

C/C++

man

directory

to

the

beginning

of

the

MANPATH.

From

the

tcsh

shell,

the

command

is:

setenv

MANPATH

/opt/ibmcmp/vacpp/6.0/man/en_US/man:$MANPATH

or,

if

you

used

a

relocation,

setenv

MANPATH

base_relocation/opt/ibmcmp/vacpp/6.0/man/en_US/man:$MANPATH

From

the

bash

shell,

the

command

is:

export

MANPATH=/opt/ibmcmp/vacpp/6.0/man/en_US/man:$MANPATH

or,

if

you

used

a

relocation,

export

MANPATH=base_relocation/opt/ibmcmp/vacpp/6.0/man/en_US/man:$MANPATH

3.

Test

the

environment

by

executing

the

man

command

on

one

of

the

compiler

invocation

commands.

For

example,

the

command

man

xlc++

should

return

the

XL

C/C++

man

page.

Installing

XL

C/C++

for

Mac

OS

X

9

The

command

man

-a

cc

should

return

all

man

pages

present

on

the

system

for

the

cc

command.

Viewing

the

product

documentation

In

addition

to

the

man

pages,

XL

C/C++

for

Mac

OS

X

provides

softcopy

documentation

that

installs

as

part

of

the

Help

package

(vacpp.help.pkg).

Upon

successful

installation,

the

softcopy

documentation

is

accessible

and

searchable

through

the

Finder

Help

menu.

The

product

documentation

is

provided

in

the

following

formats:

Readme

file

A

readme

file

is

located

at

the

root

directory

of

the

installation

CD.

The

file

installs

in

the

base_relocation/opt/ibmcmp/vacpp/6.0/doc/en_US

directory.

PDF

books

The

PDF

version

of

the

XL

C/C++

documentation

is

located

in

the

/doc/en_US/pdf

directory

of

the

installation

CD.

The

PDF

files

install

in

the

base_relocation/opt/ibmcmp/vacpp/6.0/doc/en_US/pdf

directory.

HTML

files

The

HTML

version

of

the

XL

C/C++

documentation

installs

in

the

base_relocation/opt/ibmcmp/vacpp/6.0/doc/en_US/html

directory.

You

can

display

the

HTML

from

this

directory

or

through

the

Finder

Help

menu.

Man

pages

Man

pages

for

the

compiler

invocation

commands

and

command-line

utilities

that

ship

with

this

product

are

located

in

the

base_relocation/opt/ibmcmp/vacpp/6.0/man/en_US/man

directory.

To

access

the

searchable

XL

C/C++

documentation,

select

Help

>

Mac

Help

>

IBM

XL

C/C++

Compiler

from

the

Finder

menu

bar.

Configure

the

compiler

A

compiler

configuration

file

stores

settings

such

as

the

location

of

the

compiler

and

the

install

paths

to

the

gcc

binary,

headers,

and

libraries.

Before

you

can

use

the

compiler,

you

must

have

a

default

configuration

file.

The

default

configuration

file

provides

the

configuration

for

the

compiler

that

is

used

if

no

other

configuration

file

is

specified

at

compile

time.

The

fully

qualified

name

of

the

default

configuration

file

is

/etc/opt/ibmcmp/vac/6.0/vac.cfg,

regardless

of

any

relocations

you

might

have

used.

Both

XL

C/C++

compilers

use

this

configuration

file.

The

installation

program

attempts

to

create

the

default

configuration

file

when

it

completes

installing

all

prerequisite

packages

for

the

compiler.

If

a

default

configuration

file

already

exists,

the

installation

program

creates

a

new

one.

The

previous

configuration

file

is

backed

up,

and

a

timestamp

is

appended

to

the

file

name.

The

success

or

failure

of

the

installation

program

to

configure

the

compiler

is

an

issue

separate

from

the

installation

of

the

software

packages

themselves.

The

installation

program

emits

diagnostic

messages

related

to

its

attempts

to

configure

the

compiler.

To

check

whether

the

default

configuration

file

was

created,

select

File

>

Show

Log

before

exiting

the

Installer

program.

If

you

installed

packages

10

Introduction

and

Installation

Guide

from

the

command-line

without

using

the

-dumplog

option,

you

will

need

to

check

for

the

existence

of

the

file

/etc/opt/ibmcmp/vac/6.0/vac.cfg.

If

you

installed

all

required

packages

but

did

not

get

a

default

configuration

file,

you

must

run

either

the

vacpp_configure

utility

or

the

new_install

command,

which

are

utilities

that

facilitate

creating

a

compiler

configuration

file.

The

vacpp_configure

utility

helps

you

create

a

properly

formed

configuration

file.

The

new_install

command

queries

the

/Library/Receipts

directory.

It

uses

the

results

of

its

queries

to

construct

a

vacpp_configure

command

that

creates

the

default

configuration

file

for

your

system;

new_install

then

invokes

vacpp_configure.

The

new_install

command

is

intended

to

be

used

only

for

the

first

configuration

of

the

compiler

prior

to

first

use;

vacpp_configure

should

be

used

for

reconfiguration.

Note:

You

must

run

vacpp_configure

if

the

gcc

compiler

on

your

system

is

changed

or

moved.

To

run

new_install,

do

the

following:

Step

1.

Change

directories

so

that

your

working

directory

is

/opt/ibmcmp/vacpp/6.0/bin

if

you

used

the

default

installation

location,

or

relocation/opt/ibmcmp/vacpp/6.0/bin

if

you

used

a

relocation.

Step

2.

Execute

the

command:

./new_install

which

is

equivalent

to

the

vacpp_configure

command:

relocation/opt/ibmcmp/vacpp/6.0/bin/vacpp_configure

-install

-gcc

gccpath

-smprt

relocation/opt/ibmcmp/xlsmp/1.4

-vac

relocation/opt/ibmcmp/vac/6.0

-vacpprt

relocation/opt/ibmcmp/vacpp/6.0

-vacpp

relocation/opt/ibmcmp/vacpp/6.0

-vaclic

license_relocation/opt/ibmcmp/vac/6.0/lib/libxlcmp.dylib

relocation/opt/ibmcmp/vac/6.0/etc/vac.base.cfg

If

new_install

exits

with

an

error,

it

means

that

all

the

required

information

could

not

be

determined

automatically.

You

will

need

to

run

the

vacpp_configure

utility

manually.

Related

References

v

“The

vacpp_configure

utility”

on

page

18

v

“Customizing

the

compilation

environment”

on

page

17

Setting

the

correct

NLSPATH

If

you

installed

the

run-time

libraries

for

the

compiler

or

SMP

to

non-default

locations,

you

must

set

the

NLSPATH

to

reflect

the

new

locations

for

the

run-time

message

catalogs.

An

incorrect

NLSPATH

does

not

affect

compilation.

However,

when

you

run

the

program

without

having

modified

the

NLSPATH,

the

message

catalogs

might

not

be

found.

Issue

the

following

commands

to

set

up

NLSPATH

for

a

relocated

installation:

export

NLSPATH=$NLSPATH:smprt_path/opt/ibmcmp/msg/en_US/%N

:relocation_path/opt/ibmcmp/vacpp/6.0/msg/en_US/%N

Installing

XL

C/C++

for

Mac

OS

X

11

Note:

The

command

is

a

single

line.

The

line

breaks

shown

are

for

legibility

and

formatting

on

the

printed

page.

Uninstalling

XL

C/C++

for

Mac

OS

X

You

must

have

root

user

or

administrator

access

to

uninstall

the

product.

Some

packages

should

not

be

uninstalled

if

IBM

XL

Fortran

is

installed

on

the

same

system

and

you

want

to

keep

it

on

that

system.

XL

Fortran

requires

the

following

packages

for

the

SMP

run

time:

xlsmp.rte,

xlsmp.msg.rte

and

xlsmp.lib.

Applications

built

with

the

XL

C,

C++,

and

Fortran

compilers

might

have

been

linked

to

these

run-time

libraries.

If

so,

they

will

stop

functioning

if

these

run-time

libraries

are

removed.

However,

if

you

are

uninstalling

all

IBM

compilers

from

your

system,

you

can

safely

delete

these

files

and

the

others

that

are

shared

by

the

XL

C,

C++,

and

Fortran

compilers:

/opt/ibmcmp/lib,

/opt/ibmcmp/msg,

and

/opt/ibmcmp/xlsmp.

1.

Issue

the

following

command

to

remove

the

Library

Receipts

for

the

IBM

C

and

C++

compilers,

samples,

and

documentation:

/bin/rm

-rf

/Library/Receipts/vac*.pkg

2.

Remove

the

default

configuration

file

for

the

compiler

and

the

configuration

file

for

gxlc:

/bin/rm

/etc/opt/ibmcmp/vac/6.0/vac.cfg

/bin/rm

/etc/opt/ibmcmp/vac/6.0/gxlc.cfg

3.

Remove

the

compiler

license:

/bin/rm

-f

relocation/opt/ibmcmp/vac/6.0/lib/libxlcmp.dylib

4.

Remove

the

XL

C/C++

compiler

from

the

Xcode

IDE

by

running

the

following

script:

relocation/opt/ibmcmp/vacpp/6.0/exe/xlc_ide_plugin_uninstall

5.

Remove

the

compiler

and

its

documentation:

/bin/rm

-rf

relocation/opt/ibmcmp/vac

/bin/rm

-rf

relocation/opt/ibmcmp/vacpp

6.

Remove

the

symbolic

link

to

the

XL

C/C++

for

Mac

OS

X

help:

/bin/rm

/Library/Documentation/Help/ibmxlcpp

7.

If

you

no

longer

need

the

SMP

libraries,

which

are

used

by

both

XL

Fortran

and

XL

C/C++,

delete

them

as

follows.

Do

not

delete

these

libraries

if

you

have

XL

C/C++

installed

on

your

system

or

if

you

have

any

Fortran,

C,

or

C++

applications

that

link

to

these

libraries.

/bin/rm

-rf

/Library/Receipts/xlsmp.*.pkg

/bin/rm

-rf

/opt/ibmcmp/lib/libxlomp_ser.*.dylib

/bin/rm

-rf

/opt/ibmcmp/lib/libxlsmp.*.dylib

/bin/rm

-rf

/opt/ibmcmp/msg/en_US/smprt.cat

/bin/rm

-rf

/opt/ibmcmp/xlsmp

8.

If

you

no

longer

need

the

C++

run-time

libraries,

vacpp.rte.pkg,

delete

them

as

follows.

Do

not

delete

these

libraries

if

you

have

any

C++

applications

built

with

XL

C/C++.

/bin/rm

-rf

/Library/Receipts/vacpp.rte.pkg

/bin/rm

-rf

/opt/ibmcmp/lib/libibmc++.*.dylib

12

Introduction

and

Installation

Guide

Testing

the

installation

To

test

the

product

installation

and

the

critical

search

paths,

try

compiling

simple

applications

in

C

phase

by

phase.

For

convenience,

you

might

want

to

add

the

path

to

the

XL

C/C++

executable

to

your

PATH

environment

variable.

Related

References

v

“Customizing

the

compilation

environment”

on

page

17

Building

Hello

World

in

C

and

C++

Test

the

installation

and

configuration

by

creating

classic

Hello

World

programs

in

C

and

C++

and

compiling

each

in

successive

phases.

The

C

test

verifies

whether

the

configuration

finds

the

GNU

C

compiler,

the

GNU

C

headers,

and

the

GNU

C

run-time

libraries.

The

second

C

test

verifies

that

the

language

extensions

for

AltiVec

vector

programming

are

accepted

and

properly

handled

by

the

compiler.

The

C++

test

confirms

that

the

C++

compiler,

the

GNU

C++

run-time

library

and

the

C++

headers

can

be

found.

Test

the

C

compiler

1.

In

a

text

editor,

create

a

C

program

similar

to

the

following

listing,

and

name

the

source

file

hello.c.

#include

<stdio.h>

int

main(void)

{

printf("Hello

World!\n");

return

0;

}

2.

Compile

step.

Run

the

command

/base_relocation/opt/ibmcmp/vac/6.0/bin/xlc

-c

hello.c

-o

hello.o,

which

emits

no

diagnostic

messages.

Running

a

variation

of

this

command

emits

all

pertinent

IBM

diagnostic

messages,

xlc

-c

-qinfo=all

hello.c

-o

hello.o.

Note:

2000C

The

compiler

option

-qinfo

is

equivalent

to

-qinfo=all.

In

these

commands,

the

name

of

the

output

file,

hello.o,

is

the

same

as

the

default

name

assigned

by

the

compiler.

When

the

name

you

want

for

the

output

file

is

the

same

as

that

assigned

by

the

compiler,

the

name

of

the

output

file

is

optional

in

the

command.

The

variation

is

analogous

to

the

GNU

C

command

gcc

-c

-Wall

-D_GNU_SOURCE

hello.c

-o

hello.o

The

IBM

compiler

also

defines

the

macro

_GNU_SOURCE

to

the

value

1

and

emits

all

levels

of

diagnostic

messages.

3.

Link

step.

From

the

directory

into

which

you

installed

XL

C/C++,

run

the

command

/base_relocation/opt/ibmcmp/vac/6.0/bin/xlc

-o

hello

hello.o

This

command

is

analogous

to

the

GNU

C

command

gcc

hello.o

-o

hello

4.

Run

the

program:

./hello

The

expected

result

is

to

display

"Hello

World!"

to

the

screen.

5.

Check

the

exit

code

of

the

program:

echo

$?

Installing

XL

C/C++

for

Mac

OS

X

13

The

return

value

should

be

zero.

Test

the

C++

compiler

Repeat

the

test

by

creating

a

C++

″Hello

World″

program

and

compiling

each

phase

separately.

1.

In

a

text

editor,

create

the

″Hello

World″

program

in

C++,

and

name

the

source

file

hello.C.

#include

<iostream>

int

main()

{

std::cout

<<

"Hello

World!"

<<

std::endl;

return

0;

}

2.

Compile

step.

Run

the

command

/base_relocation/opt/ibmcmp/vacpp/6.0/bin/xlc++

-c

-qinfo

hello.C

This

command

emits

all

applicable

informational

messages

and

produces

the

file

hello.o.

Note:

2000C++

The

compiler

option

-qinfo

is

equivalent

to

-qinfo=all:noppt.

3.

Link

step.

Run

the

command

/base_relocation/opt/ibmcmp/vacpp/6.0/bin/xlc++

-o

hello

hello.o

4.

Run

the

program:

./hello

The

expected

result

is

″Hello

World!″

output

to

the

screen.

5.

Check

the

exit

code

of

the

program:

echo

$?

The

result

should

be

zero.

Hello

World

with

vector

programming

If

you

have

or

plan

to

have

vector

programming

in

your

source

code,

test

a

Hello

World

program

that

requires

AltiVec

enablement.

Both

the

C

and

C++

compilers

support

the

AltiVec

C

programming

interface.

1.

Create

a

C

program

similar

to

the

following

listing,

which

follows

the

Macintosh

C

Programming

Model.

Name

the

source

file

hello2.c.

#include

<stdio.h>

int

main(void)

{

vector

unsigned

char

vec1

=

(vector

unsigned

char)

(’H’,’e’,’l’,’l’,’o’,’

’,’W’,’o’,’r’,’l’,’d’,’

’,’o’,’f’,’

’,’C’);

printf("%vc\n",

vec1);

return

0;

}

2.

Compile.

To

invoke

the

C

compiler,

run

the

command

/base_relocation/opt/ibmcmp/vac/6.0/bin/xlc

hello2.c

-c

-o

hello2.o

-qaltivec

-qinfo=por.

To

invoke

the

C++

compiler,

run

the

command

/base_relocation/opt/ibmcmp/vacpp/6.0/bin/xlc++

hello2.c

-o

hello2.o

-+

-qaltivec

-qinfo=por.

Notes

on

the

compiler

options.

v

Compiling

with

the

option

-qaltivec

automatically

generates

VRSAVE

instructions

and

keeps

the

VRSAVE

register

up-to-date.

14

Introduction

and

Installation

Guide

v

Compiling

with

the

option

-qinfo=por

returns

the

informational

messages

related

to

the

language

extensions

for

the

AltiVec

programming

interface

and

to

other

constructs

that

can

affect

portability.

v

Compiling

with

the

option

-+

instructs

the

compiler

to

treat

the

input

file

as

a

C++

source

file.

3.

Link.

To

link

using

the

C

compiler,

run

the

command

/base_relocation/opt/ibmcmp/vac/6.0/bin/xlc

-o

hello2

hello2.o.

To

use

the

C++

compiler,

run

the

command

/base_relocation/opt/ibmcmp/vacpp/6.0/bin/xlc++

-o

hello2

hello2.o

4.

Run.

./hello2

The

expected

result

is

to

display

"Hello

World

of

C"

to

the

screen.

Using

the

compiler

for

the

first

time

This

section

is

a

collection

of

notes

on

various

topics

related

to

using

XL

C/C++.

Invocation

commands

Each

compiler

invocation

command

implies

setting

some

options.

The

invocation

command

xlc

is

equivalent

to

explicitly

setting

the

following

options:

-qlanglvl=extc89

-qansialias

-qcpluscmt

-qkeyword=inline

-qnotrigraph

This

compiler

invocation

automatically

defines

the

following

IBM-specific

predefined

macro

__IBMC__.

2000C++

The

invocation

command

xlc++

is

equivalent

to

explicitly

setting

the

following

options:

-qlanglvl=extended

-qansialias

-qnotrigraph

This

compiler

invocation

automatically

defines

the

following

IBM-specific

predefined

macro

__IBMCPP__.

Ordinarily,

the

compiler

uses

the

file

name

suffix

as

specified

on

the

command

line

to

determine

the

type

of

the

source

file:

.c

(lowercase

c)

specifies

a

C

source

file

and

.C

(uppercase

c)

specifies

a

C++

file.

For

example,

hello.c

The

file

is

treated

as

a

C

file.

hello.C

The

file

is

treated

as

a

C++

file.

This

applies

for

both

case-sensitive

and

case-insensitive

file

systems.

However,

in

a

case-insensitive

file

system,

the

compilations

of

hello.c

and

hello.C

refer

to

the

same

physical

file.

That

is,

the

compiler

recognizes

the

case

difference

of

the

file

name

argument

on

the

command

line

and

determines

the

source

type

accordingly,

but

will

ignore

the

case

when

retrieving

the

file

from

the

file

system.

The

-qsourcetype

option

instructs

the

compiler

to

use

the

source

type

as

specified

on

the

option,

and

not

to

rely

on

the

case

of

the

file

name

suffix.

Case

sensitivity

Installing

XL

C/C++

for

Mac

OS

X

15

The

compiler

assumes

case

sensitivity

in

its

searches

for

files.

This

does

not

cause

problems

if

the

compiler

and

all

its

prerequiste

components

(especially

the

GNU

C

header

files)

are

installed

on

a

Mac

OS

X

machine.

The

Mac

OS

X

file

system

is

case-insensitive,

but

the

Mac

OS

X

operating

system

also

supports

case-sensitive

file

systems.

However,

if

the

compiler

is

installed

on

a

case-sensitive

file

system

(for

example,

a

network

configuration,

in

which

a

file

system

from

another

platform

is

mounted

on

the

Mac),

the

mixed

file

system

environment

can

cause

problems

for

the

compiler

if

the

correct

case

is

not

specified

in

#include

directives.

The

reason

is

that

some

IBM

header

files

replace

or

wrap

GNU

C

or

Mac

OS

X

system

headers

and

that

the

compiler

relies

on

the

Mac

search

mechanism

to

find

a

file.

The

replacements

or

wrappings

work

correctly

in

a

homogeneous

file

system

environment

because

case

in

a

specified

header

file

name

is

ignored.

However,

in

a

mixed

environment,

the

IBM

headers

might

be

skipped

as

the

operating

system

satisfies

the

search

with

a

file

of

the

same

name

but

different

case.

The

following

example

assumes

that

the

compiler

has

been

installed

in

a

network

environment

on

a

case-sensitive

file

system.

If

your

source

code

specifies

#include

<targetconditionals.h>,

the

IBM

wrapper

header

TargetConditionals.h

will

not

be

found,

only

the

Mac

OS

X

version

of

TargetConditionals.h

will

be

found,

and

XL

C/C++

compiler

will

not

behave

correctly.

The

reason

is

that

the

IBM

file

TargetConditionals.h

is

a

wrapper

header

that

uses

a

#include_next

directive

to

include

the

system

header

file

of

the

same

name.

Therefore,

a

good

habit

is

to

create

the

files

with

the

spelling

(including

capitalization)

with

which

you

intend

to

reference

them,

and

that,

in

the

source

code,

you

consistently

refer

to

them

with

the

exact

same

spelling.

Related

References

v

-qsourcetype

in

XL

C/C++

for

Mac

OS

X

Compiler

Reference

v

″Compiler

Command

Line

Options″

in

XL

C/C++

for

Mac

OS

X

Compiler

Reference

v

″Predefined

Macros

Related

to

Language

Features″

in

XL

C/C++

for

Mac

OS

X

C/C++

Language

Reference

16

Introduction

and

Installation

Guide

Customizing

the

compilation

environment

This

section

discusses

the

mechanisms

used

by

XL

C/C++

to

create

a

compilation

environment.

The

mechanisms

for

customizing

the

compilation

environment

are

environment

variables,

the

names

and

locations

of

include

files,

attributes

in

a

configuration

file,

and

command-line

options.

For

example,

if

you

set

search

paths

for

include

files

and

libraries

and

specify

the

location

of

gcc,

you

create

a

particular

compilation

environment.

The

vacpp_configure

utility,

which

facilitates

the

creation

of

valid

configuration

files,

is

also

discussed

in

this

section.

The

important

search

paths

for

XL

C/C++

are

the

standard

directory

locations

for:

v

The

GNU

C

compiler

v

GNU

C

include

files

v

GNU

C++

include

files

v

IBM

C

headers

v

GNU

C

library

paths

Environment

variables

Part

of

the

compilation

environment

are

the

search

paths

for

special

files

such

as

libraries

and

include

files.

The

following

system

variables

are

used

by

the

compiler.

DYLD_LIBRARY_PATH

Specifies

the

directory

path

for

dynamically

loaded

libraries.

Used

by

the

system

linker

at

link

time

and

at

run

time.

MANPATH

Specifies

the

search

path

for

system

and

third-party

software

man

pages.

NLSPATH

Specifies

the

directory

path

of

National

Language

Support

libraries.

PATH

Specifies

the

directory

path

for

the

executable

files

of

the

compiler.

PDFDIR

Specifies

the

directory

in

which

the

profile

data

file

is

created.

The

default

value

is

unset,

and

the

compiler

places

the

profile

data

file

in

the

current

working

directory.

Setting

this

variable

to

an

absolute

path

is

recommended

for

profile-directed

feedback.

TMPDIR

Specifies

the

directory

in

which

temporary

files

are

created.

The

default

location

may

be

inadequate

at

high

levels

of

optimization,

where

temporary

files

can

require

significant

amounts

of

disk

space.

Create

symbolic

links

for

the

PATH

The

command-line

interfaces

for

XL

C/C++

for

Mac

OS

X

are

not

automatically

installed

in

/usr/bin.

To

invoke

the

compiler

without

having

to

specify

the

full

path,

do

one

of

the

following

steps:

v

Create

symbolic

links

for

the

specific

driver

contained

in

/opt/ibmcmp/vacpp/6.0/bin

and

/opt/ibmcmp/vac/6.0/bin

to

/usr/bin.

v

Add

/opt/ibmcmp/vacpp/6.0/bin

and

/opt/ibmcmp/vac/6.0/bin

to

the

PATH

environment

variable.

©

Copyright

IBM

Corp.

2003

17

Ensuring

the

correct

NLSPATH

If

you

used

relocations

when

you

installed

the

run-time

libraries

for

the

compiler

or

SMP,

you

must

set

the

NLSPATH

to

reflect

the

new

locations

of

the

message

catalogs.

During

compilation,

the

compiler

configuration

file

provides

paths

to

the

correct

message

catalogs.

However,

at

run-time,

a

search

for

message

catalogs

uses

the

NLSPATH

environment

variable.

The

following

table

shows

the

paths

you

must

add

for

each

relocatable

package.

Updating

the

NLSPATH

Package

Addition

to

NLSPATH

xlsmp.msg.rte.pkg,

xlsmp.rte.pkg,

xlsmp.lib.pkg

smprt-path/opt/ibmcmp/msg/en_US/%N

vac.lic.pkg

(no

change)

vac.cmp.pkg

(no

change)

vacpp.cmp.pkg

relocation-path/opt/ibmcmp/vacpp/6.0/msg/en_US/%N

vacpp.rte.pkg

(no

change)

vac.help.pkg

(no

change)

vacpp.help.pkg

(no

change)

vac.samples.pkg

(no

change)

Include

files

The

locations

for

GNU,

IBM,

and

system

header

files

are

most

conveniently

specified

in

a

configuration

file.

The

compiler

option

-I

directory_name

allows

you

to

add

directories

to

the

search

paths

in

the

configuration

file.

The

configuration

file

itself

uses

the

-I

option

internally

to

set

the

directory

paths

that

it

controls.

The

compiler

searches

the

directories

specified

by

-I

within

the

configuration

file

before

searching

those

specified

by

-I

options

on

the

command

line.

See

XL

C/C++

for

Mac

OS

X

Compiler

Reference

for

more

information.

Configuration

files

A

configuration

file

is

a

plain

text

file

that

specifies

options

that

are

read

every

time

you

run

the

compiler.

The

name

of

a

configuration

file

ends

with

a

.cfg

file

name

extension.

After

you

have

a

default

configuration

file

(/etc/opt/ibmcmp/vac/6.0/vac.cfg),

you

can

create

others.

XL

C/C++

for

Mac

OS

X

provides

a

template,

which

can

be

used

to

create

/etc/opt/ibmcmp/vac/6.0/vac.cfg.

However,

any

existing

configuration

file

can

be

used

as

the

template

for

creating

another

with

the

vacpp_configure

utility.

You

can

instruct

the

compiler

to

use

a

particular

configuration

file

by

invoking

the

compiler

with

the

-F

option

and

specifying

the

fully

qualified

file

name.

The

vacpp_configure

utility

To

achieve

binary

compatibility

with

gcc-compiled

code,

the

XL

C/C++

compiler

requires

at

least

one

GNU

compiler

to

be

present

on

the

system

in

order

to

use

its

18

Introduction

and

Installation

Guide

header

files,

libraries,

and

some

of

its

binary

utilities.

A

configuration

file

saves

the

location

of

the

GNU

compiler

that

the

XL

C/C++

compiler

should

use.

The

specification

is

necessary

because

the

installation

of

a

GNU

compiler

does

not

mandate

a

location

and

because

more

than

one

instance

of

the

GNU

compiler

can

exist

on

the

same

system.

Consequently,

XL

C/C++

needs

to

know

which

to

use

and

to

be

able

to

find

it

and

its

related

headers,

libraries,

and

utilities

on

the

system.

The

directory

paths

to

these

important

resources

are

saved

as

the

values

of

attributes

in

the

configuration

file.

The

following

table

describes

these

crucial

attributes.

Platform-specific

configuration

attributes

Attribute

name

Usage

gcc_path

Specifies

the

location

of

the

gcc

command.

The

link

command

uses

the

value

of

this

attribute

to

link

C

applications.

gcc_c_stdinc

Specifies

the

standard

locations

used

by

gcc

to

search

for

the

include

files

for

C

programs.

The

value

is

a

colon-separated

list

of

directory

paths.

The

user

can

override

the

list

by

compiling

with

the

-qgcc_c_stdinc=

option.

gcc_cpp_stdinc

Specifies

the

standard

locations

used

by

gcc

to

search

for

the

include

files

for

C++

programs.

The

value

is

a

colon-separated

list

of

directory

paths.

The

user

can

override

the

list

by

compiling

with

the

-qgcc_cpp_stdinc=

option.

gcc_libs

A

comma-separated

list

of

the

GNU

C

libraries.

gcc_libdirs

A

comma-separated

list

of

directories

that

contain

GNU

C

libraries.

xlc_c_stdinc

Specifies

the

list

of

product-specific

search

locations

for

C

programs.

The

value

is

a

colon-separated

list

of

directory

paths.

The

user

can

override

the

list

by

compiling

with

the

-qc_stdinc=

option.

The

vacpp_configure

utility

facilitates

creating

and

updating

configuration

files.

The

syntax

for

vacpp_configure

is

as

follows:

��

vacpp_configure

-o

name

-install

-force

�

-gcc

gcc_path

�

�

-ibmcmp

path_base

-smprt

-vac

-vacpprt

-vacpp

-vaclic

�

�

template_config_filename

��

-smprt:

-smprt

smprt_path/opt/ibmcmp/xlsmp/1.4

Customizing

the

compilation

environment

19

-vac:

-vac

relocation_path/opt/ibmcmp/vac/6.0

-vacpprt:

-vacpprt

vacpprt_relocation_path/opt/ibmcmp/vacpp/6.0

-vacpp:

-vacpp

relocation_path/opt/ibmcmp/vacpp/6.0

-vaclic:

-vaclic

license_relocation/opt/ibmcmp/vac/6.0

where

-o

name

Specifies

the

name

of

the

configuration

file

to

generate.

By

default,

output

is

written

to

stdout.

-force

Forces

the

vacpp_configure

utility

to

overwrite

any

existing

output

file

with

the

specified

name

and

path.

By

default,

vacpp_configure

issues

an

error

and

stops

if

the

specified

file

already

exists.

-install

Equivalent

to

specifying

-o

/etc/opt/ibmcmp/vac/6.0/vac.cfg.

-gcc

gcc_path

Specifies

the

parent

of

the

bin

directory

where

gcc

is

installed.

The

gcc

command

is

assumed

to

be

in

the

bin

directory

under

this

path.

In

the

configuration

file,

the

attribute

gcc_path

is

set

equal

to

this

path.

This

attribute

can

be

specified

a

maximum

of

one

time.

For

example,

if

the

gcc

command

is

located

in

/usr/bin/gcc,

you

would

specify

-gcc

/usr

-smprt

smprt_path/opt/ibmcmp/xlsmp/1.4

Specifies

the

path

to

the

SMP

run-time

libraries.

If

you

installed

to

the

default

location,

the

path

is

/opt/ibmcmp/xlsmp/1.4.

If

you

installed

to

a

relocation,

the

path

must

end

with

opt/ibmcmp/xlsmp/1.4.

-vac

relocation_path/opt/ibmcmp/vac/6.0

Specifies

the

path

to

the

C

compiler.

If

you

installed

to

the

the

default

installation

location,

the

path

is

/opt/ibmcmp/vac/6.0.

If

you

installed

to

a

relocation,

the

path

must

end

with

opt/ibmcmp/vac/6.0.

-vacpprt

vacpprt_relocation_path/opt/ibmcmp/vacpp/6.0

Specifies

the

path

to

the

C++

run-time

libraries.

If

you

installed

to

the

default

relocation,

you

should

use

the

value

/opt/ibmcmp/vacpp/6.0.

If

you

installed

to

a

relocation,

the

path

must

end

with

opt/ibmcmp/vacpp/6.0.

-vacpp

relocation_path/opt/ibmcmp/vacpp/6.0

Specifies

the

path

to

the

C++

compiler.

20

Introduction

and

Installation

Guide

-vaclic

license_relocation/opt/ibmcmp/vac/6.0

Specifies

the

path

to

vac.lic.pkg,

the

licensing

package.

-ibmcmp

path_base

Specifies

the

path

to

the

XL

C/C++

compilers.

The

specified

path

path_base

replaces

/opt/ibmcmp

in

the

template

configuration

file.

Use

this

option

to

indicate

the

relocation

for

all

packages.

If

you

installed

to

the

default

relocation,

the

value

of

path_base

is

/opt/ibmcmp.

If

you

installed

to

a

relocation,

the

value

of

path_base

must

end

with

opt/ibmcmp.

template_config_filename

The

input

file

that

is

used

to

construct

a

configuration

file.

The

default

template

is

/opt/ibmcmp/vac/6.0/etc/vac.base.cfg.

For

example,

the

command

vacpp_configure

-o

/home/local/myconfigfile.cfg

-gcc

/usr/local/gcc3

uses

the

template

/opt/ibmcmp/vac/6.0/etc/vac.base.cfg

to

create

the

configuration

file

/home/local/myconfigfile.cfg.

The

gcc_path

attribute

in

the

configuration

file

has

stored

/usr/local/gcc3

as

the

parent

of

the

bin

directory

that

contains

the

gcc

compiler,

which

means

that

gcc

is

installed

under

/usr/local/gcc3/bin.

Command-line

options

The

compiler

options

controlling

the

standard

include

paths

are

shown

in

the

table

below.

The

value

for

paths

is

specified

by

the

user

on

the

command

line.

When

a

configuration

file

is

used,

the

value

for

paths

is

the

value

of

the

attribute

named

in

the

second

column.

The

configuration

file

created

by

the

vacpp_configure

utility

is

used

by

default.

The

compiler

processes

each

attribute

in

the

configuration

file

and

creates

a

corresponding

option

to

set

the

proper

search

path

for

include

files.

Platform-specific

configuration

options

and

related

attributes

Option

name

Attribute

Usage

Conflict

resolution

-qgcc_c_stdinc=<paths>

gcc_c_stdinc

Specifies

the

search

locations

for

the

gcc

headers.

The

default

value

is

the

value

of

the

attribute

in

the

configuration

file.

When

specified

multiple

times

in

the

same

command,

the

last

one

prevails.

The

option

is

ignored

if

the

-qnostdinc

option

is

in

effect.

-qgcc_cpp_stdinc=<paths>

gcc_cpp_stdinc

Specifies

the

search

locations

for

the

g++

headers.

The

default

value

is

the

value

of

the

attribute

in

the

configuration

file.

When

specified

multiple

times

in

the

same

command,

the

last

one

prevails.

The

option

is

ignored

if

the

-qnostdinc

option

is

in

effect.

-qc_stdinc=<paths>

xlc_c_stdinc

Specifies

the

search

locations

for

standard

include

files

for

the

IBM

C

headers.

The

default

value

is

the

value

of

the

attribute

in

the

configuration

file.

When

specified

multiple

times

in

the

same

command,

the

last

one

prevails.

The

option

is

ignored

if

the

-qnostdinc

option

is

in

effect.

-qcpp_stdinc=<paths>

xlc_cpp_stdinc

Specifies

the

search

locations

for

the

IBM

C++

headers.

The

default

value

is

the

value

of

the

attribute

in

the

configuration

file.

When

specified

multiple

times

in

the

same

command,

the

last

one

prevails.

The

option

is

ignored

if

the

-qnostdinc

option

is

in

effect.

Related

References

v

“Platform-specific

options”

on

page

30

Customizing

the

compilation

environment

21

Using

XL

C/C++

with

Xcode

and

Project

Builder

IBM

XL

C/C++

has

been

developed

to

be

compatible

with

the

GNU

C

and

C++

compilers,

Version

3.3,

on

the

Mac

OS

X

platform.

In

addition

to

having

a

command-line

interface,

XL

C/C++

can

be

used

in

the

Apple

integrated

development

environments

(IDEs)

Xcode

and

Project

Builder.

New

projects

created

in

the

Xcode

IDE

use

the

native

build

system.

On

the

other

hand,

Project

Builder

uses

the

jam

utility,

which

is

similar

to

the

make

utility

commonly

used

on

other

UNIX

platforms.

The

XL

compilers

do

not

support

a

jam-based

build

from

within

Xcode.

You

can

either

upgrade

an

existing

Project

Builder

project

to

a

native

Xcode

project,

or

you

can

use

the

XL

compilers

with

Project

Builder

to

build

the

project.

Configure

the

Xcode

IDE

The

Xcode

IDE

uses

specification

files

to

describe

the

compilers

and

associated

utilities

that

are

used

in

a

build.

During

the

XL

compiler

installation,

the

compiler

specification

file

XLC.6.0.pbcompspec

is

copied

into

the

/Library/Application

Support/Apple/Developer

Tools/Specifications

directory.

This

file

does

not

change

your

existing

Xcode

settings.

You

can

continue

to

use

gcc

as

your

build

compiler,

or

you

can

use

XL

C/C++,

as

described

in

the

next

section.

Using

Xcode

with

XL

C/C++

This

section

describes

how

to

build

projects

using

XL

C/C++.

The

following

steps

describe

how

to

modify

the

Xcode

IDE

settings

to

use

the

utilities

gxlc

and

gxlc++

to

compile

C

or

C++

source

files.

These

utilities

translate

GNU

compiler

options

into

XL

C/C++

equivalents

and

invoke

the

XL

compilers.

Many

of

the

commonly

used

GNU

C

and

C++

compiler

options

have

been

mapped

to

equivalent

XL

C/C++

options.

However,

not

all

GNU

C

and

C++

options

have

an

XL

C/C++

equivalent.

See

Related

References.

Any

XL

C/C++

compiler

option

that

has

no

corresponding

gxlc

or

gxlc++

equivalent

must

be

prefixed

with

’-Wx,’

when

specified

for

gxlc

or

gxlc++.

For

example,

to

use

the

-qnolibansi

compiler

option,

specify

-Wx,-qnolibansi.

The

following

steps

describe

how

to

set

up

an

Xcode

project

that

uses

the

XL

C

and

C++

compilers:

1.

Start

the

Xcode

IDE.

2.

Create

a

new

project

or

open

an

existing

project.

Ensure

that

you

have

write

permission

on

the

project

directory.

3.

Select

the

project

in

the

Groups

&

Files

list.

4.

Click

the

Info

button

on

the

toolbar

to

display

the

Info

window

of

the

project.

5.

Click

the

Styles

tab

to

open

the

Styles

pane

of

the

project.

6.

Clear

the

Zero

Link

and

Fix

&

Continue

options

if

they

are

selected.

XL

C/C++

does

not

support

them.

7.

Close

the

Info

window

of

the

project.

8.

Select

the

target

that

is

being

configured

from

the

Groups

&

Files

list.

9.

Click

the

Info

button

on

the

toolbar

to

display

the

Info

window

of

the

target.

10.

Click

the

Rule

tab.

11.

Click

the

plus

(+)

button

at

the

bottom

left

of

the

Rule

pane

to

add

a

new

rule.

22

Introduction

and

Installation

Guide

12.

From

the

Process

list,

specify

the

type

of

source

files

for

the

new

rule.

To

use

the

XL

compilers

select

C

source

files.

This

rule

applies

to

both

C

and

C++

source

files.

13.

From

the

Using

list,

select

IBM

XL

C/C++

Version

6.0.

This

list

item

informs

the

IDE

to

use

the

IBM

C

or

C++

compiler,

depending

on

the

type

of

the

source

files.

Alternatively,

you

can

select

IBM

XLC

C

Version

6.0;

if

your

project

contains

only

C

source

files.

Both

list

items

will

work

for

a

project

that

uses

C

source

files.

14.

Click

the

Build

tab.

15.

Clear

the

Precompile

prefix

header

if

it

is

selected.

XL

C/C++

does

not

support

it.

16.

If

you

are

building

a

C++

application,

clear

the

Prebinding

checkbox

under

Standard

Build

Settings.

Currently

the

XL

C++

run

time

does

not

support

prebinding.

17.

Add

compiler

options:

v

Specify

GNU

C

and

C++

compiler

options

in

the

Build

Pane

of

the

target.

Only

the

GNU

options

that

can

be

translated

by

gxlc

or

gxlc++

can

be

specified

this

way.

For

those

that

cannot

be

translated,

specify

them

as

XL

C/C++

compiler

options

as

described

in

the

next

bullet.

v

Specify

XL

C/C++

compiler

options

by

adding

them

to

Current

Settings/OTHER_CFLAGS,

using

the

format

-Wx,-ibm_option

v

Specify

any

XL

C/C++

linking

options

in

Standard

Build

Settings/Linking/Other

linker

flags,

using

the

format

-Wx,-ibm_option

18.

Close

the

Info

window

of

the

target.

19.

Build

the

project.

Hints

and

tips

for

using

XL

C/C++

with

the

Xcode

IDE

v

By

default,

the

XL

C/C++

compilers

search

for

headers

files

in

the

same

directory

as

the

current

source

file.

If

there

are

separate

header

file

directories,

you

need

to

specify

them

in

″Header

search

paths″

under

the

Build

pane

of

the

target.

v

If

your

application

includes

Carbon.h

using

#include

<Carbon.h>

instead

of

#include

<Carbon/Carbon.h>,

you

need

to

add

the

header

file

search

path

/Developer/Headers/FlatCarbon

to

the

Header

search

paths

under

the

Build

pane

of

the

target.

v

Most

of

the

warning

options

provided

under

the

GNU

option

settings

are

not

supported

by

the

XL

C/C++

compilers.

These

are

the

GNU

warning

-W

options.

You

can

get

similar

compiler

diagnostics

by

using

XL

C/C++

suboptions

of

-qinfo.

v

The

macro

__APPLE_CC__

is

not

defined

by

the

XL

C/C++

compilers.

Related

References

v

“GNU

C

and

C++

to

XL

C/C++

option

mapping”

on

page

33

Using

Project

Builder

with

XL

C/C++

You

can

redirect

the

Project

Builder

IDE

to

use

gxlc

and

gxlc++

to

translate

a

GNU

compiler

option

into

an

XL

C/C++

equivalent.

The

scripts

xlc_pb

and

xlc++_pb

provide

the

necessary

interface

to

invoke

gxlc

and

gxlc++

respectively.

Any

XL

C/C++

compiler

option

that

has

no

corresponding

gxlc

or

gxlc++

must

be

prefixed

with

-Wx,.

For

example,

to

use

the

-qnolibansi

compiler

option,

specify

-Wx,-qnolibansi.

Customizing

the

compilation

environment

23

The

following

steps

describe

how

to

use

Project

Builder

with

the

XL

compilers.

These

steps

can

only

be

used

on

C

or

C++

projects.

1.

Start

Project

Builder.

2.

Create

a

new

project

or

open

an

existing

project.

3.

Edit

the

build

settings

for

the

target

as

follows:

v

Set

the

CC

and

CPLUSPLUS

variables.

See

next

section

for

step-by-step

instructions.

v

Specify

GNU

C

or

C++

compiler

options.

v

Specify

XL

C/C++

compiler

options

in

the

format

-Wx,-ibm_option

4.

Build

the

project.

Related

References

v

“GNU

C

and

C++

to

XL

C/C++

option

mapping”

on

page

33

Setting

the

CC

and

CPLUSPLUS

variables

The

scripts

xlc_pb

and

xlc++_pb

are

used

to

provide

the

interface

to

Project

Builder.

They

do

the

necessary

setup

and

then

run

gxlc

or

gxlc++.

To

direct

Project

Builder

to

use

these

scripts,

you

must

set

the

CC

variable

if

the

project

contains

C

source

files

and

the

CPLUSPLUS

variable

if

the

project

contains

any

C++

source

files.

You

need

to

do

this

only

once

for

a

project.

To

set

the

CC

or

CPLUSPLUS

variables,

do

the

following:

1.

Open

an

existing

project

or

create

a

new

one.

2.

Click

the

Targets

tab

to

display

a

contents

list.

3.

In

the

contents

list,

under

Targets,

select

the

name

of

the

target

you

are

working

on.

The

Target

Summary

pane

appears.

4.

From

the

navigation

tab

on

the

left,

select

Settings

>

Expert

View.

A

list

of

Build

Settings

appears.

5.

Add

an

entry

to

the

Build

Settings

by

clicking

the

plus

sign

(+)

at

the

bottom

left

of

the

list.

6.

In

the

Name

field,

rename

the

new

setting

CC.

In

the

Value

field,

enter

the

full

path

to

the

script

xlc_pb.

The

script

is

located

in

the

$vacPath/exe/

directory.

For

example,

if

you

used

the

default

installation

location,

the

value

you

should

enter

is:

/opt/ibmcmp/vac/6.0/exe/xlc_pb.

7.

Click

the

plus

sign

(+)

at

the

bottom

left

of

the

Build

Settings

list

to

add

an

entry

for

the

CPLUSPLUS

variable.

8.

In

the

Name

field,

rename

the

setting

CPLUSPLUS.

In

the

Value

field,

enter

the

full

path

to

the

script

xlc++_pb.

The

script

is

located

in

the

$vacppPath/exe/

directory.

For

example,

if

you

used

the

default

installation

location,

the

value

you

should

enter

is:

/opt/ibmcmp/vacpp/6.0/exe/xlc++_pb.

Hints

and

tips

for

using

XL

C/C++

with

Project

Builder

See

“Hints

and

tips

for

using

XL

C/C++

with

the

Xcode

IDE”

on

page

23.

24

Introduction

and

Installation

Guide

Controlling

the

compilation

process

The

overall

compilation

process

consists

of

three

phases:

preprocessing,

translation

to

object

code,

and

linking.

By

default,

a

compiler

invocation

command

invokes

all

phases

of

the

compilation

process

to

translate

a

program

from

source

code

to

executable

output.

If

file

names

for

input

and

output

files

are

specified

when

the

compiler

is

invoked,

it

determines

the

starting

and

ending

phases

from

the

file

name

suffix

(extension)

of

the

input

and

output

files.

You

can

also

create

a

particular

type

of

output

file

at

any

compilation

phase

by

using

appropriate

compiler

options.

For

example,

invoking

the

xlc

or

xlc++

command

with

the

-E

or

-P

option

performs

only

the

preprocessing

phase

on

the

input

files.

The

compiler

invocation

determines

from

the

extension

of

the

input

file

name

whether

to

call

the

IBM

compiler,

the

system

linker,

or

the

Mach-O

assembler.

Invoking

the

compiler

In

most

cases,

you

should

use

the

xlc++

command

to

compile

C++

source

files

and

the

xlc

command

to

compile

C

source

files..

Variations

of

the

basic

compiler

invocation

command

exist

primarily

to

support

different

version

levels

of

the

C

language

and

different

language

extensions

for

C++.

Both

xlc

anc

xlc++

will

compile

source

as

either

C

or

C++,

but

compiling

C++

files

with

xlc

may

result

in

link

errors

or

run-time

errors.

The

errors

result

because

all

the

libraries

required

for

C++

code

are

not

specified

when

the

linker

is

called.

Compiler

invocation

commands

Basic

invocation

command

Thread-safe

variation

Description

xlc++

xlc++_r

Invokes

the

compiler

so

that

source

files

are

compiled

as

C++

language

source

code.

Equivalent

to

xlC

and

xlC_r.

xlC

xlC_r

Invokes

the

compiler

so

that

source

files

are

compiled

as

C++

language

source

code.

xlc

xlc_r

Invokes

the

compiler

to

compile

C

source

files

with

the

default

language

level

of

C89

and

the

compiler

options

-qlonglong

and

-qansialias.

c89

c89_r

Invokes

the

compiler

to

compile

enforcing

strict

conformance

to

the

ISO

C89

standard

(ISO/IEC

9899:1990).

c99

c99_r

Invokes

the

compiler

with

support

for

C99

features.

Note

that

full

conformance

with

the

ISO

C99

standard

(ISO/IEC

14882:1998)

also

requires

support

from

the

run-time

library.

cc

cc_r

Invokes

the

compiler

for

use

with

legacy

C

code

that

does

not

require

compliance

with

C89

or

C99.

gxlc

Invokes

the

compiler

after

translating

gcc

command-line

options

to

XL

C/C++

options.

Note

that

not

every

gcc

option

has

an

exact

XL

C/C++

equivalent.

gxlc++

Invokes

the

compiler

after

translating

g++

command-line

options

to

XL

C/C++

options.

Note

that

not

every

g++

option

has

an

exact

XL

C/C++

equivalent.

©

Copyright

IBM

Corp.

2003

25

Types

of

input

and

output

files

The

compiler

uses

the

file

name

extension

to

determine

the

appropriate

compilation

phase

and

invoke

the

associated

tool.

The

compiler

accepts

the

following

types

of

files

as

input:

Accepted

input

file

types

File

type

description

File

name

extension

Example

C

and

C++

source

file

.c

(lowercase

c)

for

C

language

source

files;

.C

(uppercase

c),

.cc,

.cp,

.c++,

.cpp,

.cxx

for

C++

source

files

file_name.c

file_name.C,

file_name.cc,

file_name.cpp,

file_name.cxx

Preprocessed

source

file

.i

file_name.i

Object

file

.o

hello.o

Assembler

file

.s

check.s

Archive

file

.a

v1r5.a

Shared

library

file

.dylib

libFoo.dylib

IPA

control

files

(-qipa=file_name)

No

naming

convention

for

file_name

is

enforced.

ipa.ctl

Note:

To

control

the

interpretation

of

input

files

with

the

file

name

extension

.C

(capital

c),

use

the

compiler

option

-qsourcetype.

This

option

provides

the

ability

to

override

the

source

file

type

implied

by

the

file

name

extension.

You

can

specify

the

following

types

of

output

files

when

invoking

the

compiler:

Types

of

output

files

File

type

description

Example

Executable

file

By

default,

a.out

Object

files

file_name.o

Preprocessed

files

file_name.i

Listing

files

file_name.lst

Target

file

file_name.d

Related

References

v

-qsourcetype

in

XL

C/C++

for

Mac

OS

X

Compiler

Reference

Default

behavior

If

you

invoke

the

compiler

without

specifying

any

options,

the

behavior

of

the

compiler

is

governed

by

the

following

default

settings:

v

Attempts

to

read

and

invoke

the

options

specified

in

a

configuration

file.

v

Searches

for

library

files.

v

Aligns

structures

using

-qalign=power

alignment:

uses

8

bytes

as

the

strictest

alignment

constraint

for

structures

and

16-byte

alignment

for

AltiVec

vector

types.

26

Introduction

and

Installation

Guide

v

Produces

an

unoptimized

executable

named

a.out.

v

Diagnoses

AltiVec

programming

constructs

as

syntax

errors.

See

XL

C/C++

for

Mac

OS

X

Compiler

Reference

for

more

information.

Controlling

the

compilation

process

27

28

Introduction

and

Installation

Guide

Getting

started

with

compiler

options

Compiler

options

perform

a

variety

of

functions,

such

as

setting

compiler

characteristics,

describing

the

object

code

to

be

produced,

controlling

the

diagnostic

messages

emitted,

and

performing

some

preprocessor

functions.

You

can

specify

compiler

options

on

the

command

line,

in

a

configuration

file,

in

your

source

code,

or

any

combination

of

these

techniques.

Most

options

that

are

not

explicitly

set

take

the

default

settings.

When

multiple

compiler

options

have

been

specified,

it

is

possible

for

option

conflicts

and

incompatibilities

to

occur.

To

resolve

these

conflicts

in

a

consistent

fashion,

the

compiler

applies

the

following

priority

sequence

unless

otherwise

specified:

1.

Source

file

overrides

2.

Command

line

overrides

3.

Configuration

file

overrides

4.

Default

settings

Generally,

among

multiple

command-line

options,

the

last

specified

prevails.

Note:

The

-I

compiler

option

is

a

special

case.

The

compiler

searches

any

directories

specified

with

-I

in

the

vac.cfg

file

before

it

searches

the

directories

specified

with

-I

on

the

command

line.

The

option

is

cumulative

rather

than

preemptive.

The

option

-l

(lowercase

L)

also

has

cumulative

behavior.

See

XL

C/C++

for

Mac

OS

X

Compiler

Reference

for

more

information.

Compiler

messages

XL

C/C++

uses

a

five-level

classification

scheme

for

diagnostic

messages.

Each

level

of

severity

is

associated

with

a

compiler

response.

Not

every

error

halts

compilation.

The

following

table

provides

a

key

to

the

abbreviations

for

the

severity

levels

and

the

associated

compiler

response.

Severity

levels

and

compiler

response

Letter

Severity

Compiler

Response

I

Informational

Compilation

continues.

The

message

reports

conditions

found

during

compilation.

W

Warning

Compilation

continues.

The

message

reports

valid

but

possibly

unintended

conditions.

2000C

E

Error

Compilation

continues

and

object

code

is

generated.

Error

conditions

exist

that

the

compiler

can

correct,

but

the

program

might

not

produce

the

expected

results.

S

Severe

error

Compilation

continues,

but

object

code

is

not

generated.

Error

conditions

exist

that

the

compiler

cannot

correct.

©

Copyright

IBM

Corp.

2003

29

Severity

levels

and

compiler

response

Letter

Severity

Compiler

Response

U

Unrecoverable

error

The

compiler

halts.

An

unrecoverable

error

has

been

encountered.

If

the

message

indicates

a

resource

limit

(for

example,

file

system

full

or

paging

space

full),

provide

additional

resources

and

recompile.

If

it

indicates

that

different

compiler

options

are

needed,

recompile

using

them.

If

the

message

indicates

an

internal

compiler

error,

the

message

should

be

reported

to

your

IBM

service

representative.

The

default

behavior

of

the

compiler

is

to

compile

with

the

option

-qnoinfo

or

-qinfo=noall.

The

suboptions

for

-qinfo

provide

the

ability

to

specify

a

particular

category

of

informational

diagnostics.

For

example,

-qinfo=por

limits

the

output

to

those

messages

related

to

portability

issues.

Note:

In

C,

the

option

-qinfo

is

equivalent

to

-qinfo=all;

in

C++,

-qinfo

is

equivalent

to

-qinfo=all:noppt.

Return

codes

At

the

end

of

compilation,

the

compiler

sets

the

return

code

to

zero

under

any

of

the

following

conditions:

v

No

messages

are

issued.

v

The

highest

severity

level

of

all

errors

diagnosed

is

less

than

the

setting

of

the

-qhalt

compiler

option,

and

the

number

of

errors

did

not

reach

the

limit

set

by

the

-qmaxerr

compiler

option.

v

No

message

specified

by

the

-qhaltonmsg

compiler

option

is

issued.

Otherwise,

the

compiler

sets

one

of

the

return

codes

documented

in

XL

C/C++

for

Mac

OS

X

Compiler

Reference.

Compiler

message

format

By

default,

diagnostic

messages

have

the

following

format:

"file",

line

line_number.column_number:

15cc-nnn

(severity)

message_text.

where

15

is

the

compiler

product

identifier,

cc

is

a

two-digit

code

indicating

the

compiler

component

that

issued

the

message

(for

example,

compiler,

linker,

assembler),

nnn

is

the

message

number,

and

severity

is

the

letter

of

the

severity

level.

This

format

is

the

same

as

compiling

with

the

-qnosrcmsg

option

enabled.

To

get

an

alternate

message

format

in

which

the

source

line

displays

with

the

diagnostic

message,

try

compiling

with

-qsrcmsg

option.

Note:

Messages

are

not

intended

to

be

used

as

input

to

other

programs.

The

message

format

and

content

are

not

intended

to

be

a

programming

interface

and

may

change

from

release

to

release.

Platform-specific

options

This

section

features

options

that

are

basic

to

using

the

compiler

on

the

Mac

OS

X

platform.

30

Introduction

and

Installation

Guide

See

XL

C/C++

for

Mac

OS

X

Compiler

Reference

for

more

information.

Selected

compiler

options

specific

to

the

Mac

OS

X

platform

Option

name

Description

-qgcc_c_stdinc=<paths>

Specifies

the

directory

search

paths

for

the

GNU

C

headers.

-qgcc_cpp_stdinc=<paths>

Specifies

the

directory

search

paths

for

the

GNU

C++

headers.

-qc_stdinc=<paths>

Specifies

the

directory

search

paths

for

the

IBM

C

headers.

-qcpp_stdinc=<paths>

Specifies

the

directory

search

paths

for

the

IBM

C++

headers.

-qalign

Specifies

the

alignment

rules

for

aggregates.

The

default

is

-qalign=power

-qaltivec

Enables

support

for

AltiVec

vector

programming.

-qarch

Specifies

the

architecture

on

which

the

executable

program

will

run.

The

default

is

-qarch=ppcv.

-qchars

Instructs

the

compiler

to

treat

all

variables

char

as

either

signed

or

unsigned.

The

default

is

-qchars=signed.

-qcommon

Indicates

the

preferred

section

into

which

the

compiler

should

place

uninitialized

global

data.

The

default

is

-qcommon,

meaning

the

.comm

section.

-qnocommon

requests

the

compiler

to

use

the

.data

section.

-qcomplexgccincl

Instructs

the

compiler

to

place

#pragma

complexgcc(on)

and

#pragma

complexgcc(pop)

directives

around

include

files

in

the

specified

directories.

The

default

is

provided

by

the

configuration

file

specified

at

compile

time.

-qframeworkdir

Specifies

the

path

to

framework

directories.

-qmacpstr

Enables

Pascal-style

string

handling.

The

default

is

-qnomacpstr.

-qpic

Instructs

the

compiler

to

produce

position-independent

code.

The

default

is

-qpic.

-qsourcetype

Controls

the

interpretation

of

input

file

names.

The

default

behavior

is

that

the

programming

language

of

a

source

file

is

implied

by

the

suffix

of

its

file

name.

-qstdframework

Instructs

the

compiler

to

search

the

standard

framework

directories.

The

default

is

-qstdframework.

-qtrigraph

Instructs

the

compiler

to

interpret

or

not

interpret

trigraph

sequences,

regardless

of

the

specified

language

level.

The

default

on

the

Mac

OS

X

platform

is

-qnotrigraph,

which

enables

the

expected

interpretation

of

the

character

literal

’????’

often

used

for

version

checking.

-qtune

Specifies

the

architecture

for

which

the

executable

program

is

optimized.

The

default

is

-qtune=ppc970.

-qvrsave

Specifies

that

prologs

and

epilogs

of

functions

in

the

compilation

unit

should

include

code

needed

to

maintain

the

VRSAVE

register.

The

default

is

-qvrsave.

-qwarnfourcharconsts

Instructs

the

compiler

to

generate

warning

messages

for

four-character

constants.

The

default

is

-qnowarnfourcharconsts.

The

following

options

provide

specialized

control

of

directory

search

paths.

The

options

are

cumulative,

rather

than

preemptive.

The

paths

specified

on

the

command

line

with

the

options

-L

and

-l

(lowercase

L)

will

have

lower

priority

at

link

time

than

those

specified

as

an

option

in

the

configuration

file,

but

higher

priority

than

paths

specified

as

an

attribute

in

the

configuration

file.

Selected

path

control

options

Option

name

Description

-I

Specifies

additional

directory

paths

to

be

searched

for

#include

files.

-L

Specifies

the

library

search

paths

to

be

searched

at

link

time.

Related

References

Getting

started

with

compiler

options

31

v

“Options

summary:

C++

compiler”

on

page

40

v

″Compiler

Command

Line

Options″

in

XL

C/C++

for

Mac

OS

X

Compiler

Reference.

Reusing

GNU

C

and

C++

compiler

options

with

gxlc

and

gxlc++

Each

of

the

gxlc

and

gxlc++

utilities

accepts

GNU

C

and

C++

compiler

options

and

translates

them

into

comparable

XL

C/C++

options.

Each

utility

uses

the

XL

C/C++

options

to

create

an

xlc

or

xlc++

invocation

command,

which

it

then

uses

to

invoke

XL

C/C++.

These

utilities

are

provided

to

facilitate

the

reuse

of

make

files

created

for

applications

previously

developed

with

GNU

C

and

C++.

However,

to

fully

exploit

the

capabilities

of

XL

C/C++,

it

is

recommended

that

you

use

the

XL

C/C++

invocation

commands

and

their

associated

options.

The

actions

of

gxlc

and

gxlc++

are

controlled

by

the

configuration

file

gxlc.cfg.

Both

utilities

use

the

same

configuration

file.

The

GNU

C

and

C++

options

that

have

an

XL

C

or

XL

C++

counterpart

are

shown

in

this

file.

Not

every

GNU

C

and

C++

option

has

a

corresponding

XL

C/C++

option.

The

gxlc

utility

returns

a

warning

for

any

GNU

C

option

it

cannot

translate;

similarly,

gxlc++

for

any

g++

options

that

are

not

mapped

to

a

corresponding

XL

C++

option.

The

gxlc

and

gxlc++

option

mappings

are

modifiable.

For

information

on

adding

to

or

editing

the

gxlc

and

gxlc++

configuration

file,

see

“Configuring

the

option

mapping”

on

page

36.

Example

To

use

the

gcc

-ansi

option

to

compile

the

C

version

of

the

Hello

World

program,

you

can

use:

gxlc

-ansi

hello.c

which

translates

into:

xlc

-qlang=extc89

hello.c

This

command

is

then

used

to

invoke

the

XL

C

compiler.

gxlc

and

gxlc++

return

codes

Because

gxlc

and

gxlc++

invoke

the

compiler,

they

return

output,

like

any

other

invocation

method.

In

addition

to

listings,

diagnostic

messages

related

to

the

compilation,

and

return

codes,

gxlc

and

gxlc++

return

warnings

for

input

options

that

were

not

translated.

If

gxlc

or

gxlc++

cannot

successfully

call

the

compiler,

it

sets

the

return

code

to

one

of

the

following

values:

40

A

gcc

or

g++

option

error

or

unrecoverable

error

has

been

detected.

255

An

error

has

been

detected

while

the

process

was

running.

gxlc

and

gxlc++

syntax

The

following

diagram

shows

the

gxlc

and

gxlc++

syntax:

��

gxlc

filename

gxlc++

-v

-Wx,

xlc_or_xlc++_options

gcc_or_g++_options

-vv

��

where:

filename

Is

the

name

of

the

file

to

be

compiled.

32

Introduction

and

Installation

Guide

-v

Allows

you

to

verify

the

command

that

will

be

used

to

invoke

XL

C/C++.

gxlc

or

gxlc++

displays

the

XL

C/C++

invocation

command

that

it

has

created,

before

using

it

to

invoke

the

compiler.

-vv

Allows

you

to

run

a

simulation.

gxlc

or

gxlc++

displays

the

XL

C/C++

invocation

command

that

it

has

created,

but

does

not

invoke

the

compiler.

-Wx,xlc_or_xlc++_options

Sends

the

given

XL

C/C++

options

directly

to

the

xlc

or

xlc++

invocation

command.

gxlc

or

gxlc++

adds

the

given

options

to

the

XL

C/C++

invocation

it

is

creating,

without

attempting

to

translate

them.

Use

this

option

with

known

XL

C/C++

options

to

improve

the

performance

of

the

utility.

gcc_or_g++_options

Are

the

gcc

or

g++

options

that

are

to

be

translated

to

xlc

or

xlc++

options.

The

utility

emits

a

warning

for

any

option

it

cannot

translate.

The

gcc

and

g++

options

that

are

currently

recognized

by

gxlc

and

gxlc++

are

listed

in

the

configuration

file

gxlc.cfg.

GNU

C

and

C++

to

XL

C/C++

option

mapping

The

following

table

lists

the

gcc

options

that

are

accepted

and

translated

by

gxlc

and

gxlc++.

All

other

GNU

C

and

C++

options

that

are

specified

as

input

to

gxlc

and

gxlc++

are

ignored

or

generate

an

error.

If

the

negative

form

of

a

GNU

C

and

C++

option

exists,

then

the

negative

form

is

also

recognized

and

translated

by

gxlc

and

gxlc++.

Table

1.

Mapped

options:

GNU

C

and

C++

to

XL

C/C++

GNU

C

and

C++

option

XL

C/C++

option

-###

-#

2000C

-ansi

-qlang=extc89

-C

-c

-Dmacro[=defn]

-E

-e

-F[dir]

-qframeworkdir=dir

-faltivec

-qaltivec

-fcommon

-qcommon

-fdollars-in-identifiers

-qdollar

2000C++

-fdump-class-hierarchy

-qdump_class_hierarchy

2000C++

-fexceptions

-qeh

2000C++

-ffor-scope

-qlanglvl=ansifor

2000C++

-fno-for-scope

-qlanglvl=noansifor

-finline

-qinline

-finline-functions

-qinline

-finline-limit=n

-qinline=n

2000C++

-fkeep-inline-functions

-qkeepinlines

Getting

started

with

compiler

options

33

Table

1.

Mapped

options:

GNU

C

and

C++

to

XL

C/C++

(continued)

GNU

C

and

C++

option

XL

C/C++

option

-fno-asm

-qnokeyword=asm

-qnokeyword=inline

-qnokeyword=typeof

2000C++

-fno-gnu-keywords

-qkeyword=typeof

2000C++

-fno-operator-names

-qkeyword=and

-qnokeyword=bitand

-qnokeyword=bitor

-qnokeyword=compl

-qnokeyword=not

-qnokeyword=or

-qnokeyword=xor

-fpascal-strings

-qmacpstr

-fPIC

-qpic

2000C++

-frtti

-qrtti

-fshort-enums

-qenum=small

-fsigned-bitfields

-qbitfields=signed

-fsigned-char

-qchars=signed

-fstrict-aliasing

-qansialias

-fsyntax-only

-qsyntaxonly

-funroll-all-loops

-qunroll=all

-funroll-loops

-qunroll=all

-funsigned-bitfields

-qbitfields=unsigned

-funsigned-char

-qchars=unsigned

-fwritable-strings

-qnoro

-g

-g3

-g

-ggdb

-g

-gstabs

-g

-Idir

-Ldir

-llibrary

-M

-MD

-M

-malign-mac68k

-qalign=mac68k

-malign-natural

-qalign=natural

-malign-power

-qalign=power

-dynamic-no-pic

-qnopic

-mno-fused-madd

-qfloat=nomaf

-mfused-madd

-qfloat=maf

-nodefaultlibs

-qnolib

-nostartfiles

-qnocrt

-nostdinc

-qnostdinc

-nostdlib

-qnolib

-qnocrt

-O

34

Introduction

and

Installation

Guide

Table

1.

Mapped

options:

GNU

C

and

C++

to

XL

C/C++

(continued)

GNU

C

and

C++

option

XL

C/C++

option

-O0

-qnoopt

-O1

-O

-O2

-O3

-Os

-O

-qcompact

-o

-p

-pg

-r

-s

2000C

-std=c89

-F:c89

2000C

-std=iso9899:1990

-F:c89

2000C

-std=iso9899:199409

-F:c89

2000C

-std=c99

-F:c99

2000C

-std=c9x

-F:c99

2000C

-std=iso9899:1999

-F:c99

2000C

-std=iso9899:199x

-F:c99

2000C

-std=gnu89

-qlang=extc89

2000C

-std=gnu99

-qlang=extc99

2000C

-std=gnu9x

-qlang=extc99

2000C++

-std=c++98

-qlang=strict98

2000C++

-std=gnu++98

-qlang=extended

-Umacro

-u

-Wuninitialized

-qinfo=ini

-Wunreachable-code

-qinfo=eff

-Wa,option

-Wfour-char-constants

-qwarnfourcharconsts

-Wl,option

-Wp,option

-w

-x

assembler

-qsourcetype=assembler

-x

c

-qsourcetype=c

-x

c++

-qsourcetype=c++

-x

none

-qsourcetype=default

-x

objective-c

-qsourcetype=objc

-Z

Getting

started

with

compiler

options

35

Configuring

the

option

mapping

The

gxlc

and

gxlc++

utilities

use

the

configuration

file

gxlc.cfg

to

translate

GNU

C

and

C++

options

to

XL

C/C++

options.

Each

entry

in

gxlc.cfg

describes

how

gxlc

or

gxlc++

should

map

a

GNU

C

and

C++

option

to

an

XL

C/C++

option

and

how

to

process

it.

The

following

description

of

how

to

configure

the

option

mapping

pertains

equally

to

gxlc++

as

well

as

gxlc.

An

entry

consists

a

string

of

flags

for

the

processing

instructions,

a

string

for

the

GNU

C

option,

and

a

string

for

the

XL

C/C++

option.

The

three

fields

must

be

separated

by

whitespace.

If

an

entry

contains

only

the

first

two

fields

and

the

XL

C/C++

option

string

is

omitted,

the

GNU

C

option

in

the

second

field

will

be

recognized

by

gxlc

and

silently

ignored.

The

#

character

is

used

to

insert

comments

in

the

configuration

file.

A

comment

can

be

placed

on

its

own

line,

or

at

the

end

of

an

entry.

The

following

syntax

is

used

for

an

entry

in

gxlc.cfg:

abcd

"gcc_or_g++_option"

"xlc_or_xlc++_option"

where:

a

Lets

you

disable

the

option

by

adding

no-

as

a

prefix.

The

value

is

either

y

for

yes,

or

n

for

no.

For

example,

if

the

flag

is

set

to

y,

then

fcommon

can

be

disabled

as

fno-common,

and

the

entry

is:

ynn*

"-fcommon"

"-qcommon"

If

given

-fno-common,

then

gxlc

will

translate

it

to

-qnocommon

b

Informs

gxlc

that

the

XL

C/C++

option

has

an

associated

value.

The

value

is

either

y

for

yes,

or

n

for

no.

For

example,

finline-limit=n

maps

to

qinline=n.

In

this

case,

the

flag

is

set

to

y,

and

the

entry

is:

nyn*

"-finline-limit"

"-qinline"

gxlc

will

then

expect

a

value

for

these

options.

c

Controls

the

processing

of

the

options.

The

value

can

be:

v

n,

which

tells

gxlc

to

process

the

option

listed

in

the

gcc-option

field

v

i,

which

tells

gxlc

to

ignore

the

option

listed

in

the

gcc-option

field.

gxlc

will

generate

an

informational

message

indicating

that

this

has

been

done,

and

continue

processing

the

given

options.

v

w,

which

tells

gxlc

to

ignore

the

option

listed

in

the

gcc-option

field.

gxlc

will

generate

a

warning

message

indicating

that

this

has

been

done,

and

continue

processing

the

given

options.

v

e,

which

tells

gxlc

to

halt

processing

if

the

option

listed

in

the

gcc-option

field

is

encountered.

gxlc

will

also

generate

an

error

message.

For

example,

the

gcc

option

I-

is

not

supported

and

must

be

ignored

by

gxlc.

In

this

case,

the

flag

is

set

to

i,

and

the

entry

is:

nni*

"-I-"

If

gxlc

encounters

this

option

as

input,

it

will

not

process

it

and

will

generate

an

informational

message.

36

Introduction

and

Installation

Guide

d

Lets

gxlc

include

or

ignore

an

option

based

on

the

type

of

compiler.

The

value

can

be:

v

c,

which

tells

gxlc

to

translate

the

option

only

for

C.

v

x,

which

tells

gxlc

to

translate

the

option

only

for

C++.

v

*,

which

tells

gxlc

to

translate

the

option

for

C

and

C++.

For

example,

fwritable-strings

is

supported

by

both

compilers,

and

maps

to

qnoro.

The

entry

is:

nnn*

"-fwritable-strings"

"-qnoro"

″gcc_or_g++_option″

Is

a

string

representing

a

gcc

or

g++

option

supported

by

GNU

C,

Version

3.3.

This

field

is

required

and

must

appear

in

double

quotation

marks.

″xlc_or_xlc++_option″

Is

a

string

representing

an

XL

C

or

XL

C++

option.

This

field

is

optional,

and,

if

present,

must

appear

in

double

quotation

marks.

If

left

blank,

gxlc

or

gxlc++

ignores

the

gcc_or_g++_option

in

that

entry.

It

is

possible

to

create

an

entry

that

will

map

a

range

of

options.

This

is

accomplished

by

using

the

asterisk

(*)

as

a

wildcard.

For

example,

the

gcc

D

option

requires

a

user-defined

name

and

can

take

an

optional

value.

It

is

possible

to

have

the

following

series

of

options:

-DCOUNT1=100

-DCOUNT2=200

-DCOUNT3=300

-DCOUNT4=400

Instead

of

creating

an

entry

for

each

version

of

this

option,

the

single

entry

is:

nnn*

"-D*"

"-D*"

where

the

asterisk

will

be

replaced

by

any

string

following

the

-D

option.

Conversely,

you

can

use

the

asterisk

to

exclude

a

range

of

options.

For

example,

if

you

want

gxlc

or

gxlc++

to

ignore

all

the

std

options,

then

the

entry

would

be:

nni*

"-std*"

When

the

asterisk

is

used

in

an

option

definition,

option

flags

a

and

b

are

not

applicable

to

these

entries.

The

character

%

is

used

with

a

GNU

C

or

g++

option

to

signify

that

the

option

has

associated

parameters.

This

is

used

to

insure

that

gxlc

or

gxlc++

will

ignore

the

parameters

associated

with

an

option

that

is

ignored.

For

example,

the

include

option

is

not

supported

and

uses

a

parameter.

Both

must

be

ignored

by

the

application.

In

this

case,

the

entry

is:

nni*

"-include

%"

Related

References

v

“Options

summary:

C++

compiler”

on

page

40

v

XL

C/C++

for

Mac

OS

X

Compiler

Reference

v

The

GNU

Compiler

Collection

online

documentation

at

http://gcc.gnu.org/onlinedocs/

Getting

started

with

compiler

options

37

http://gcc.gnu.org/onlinedocs

Options

summary:

C

compiler

This

chapter

appendix

presents

a

summary

of

the

C

compiler

options,

grouped

by

type.

The

higher

level

groupings

contain

subgroups

of

options

for

basic

translation

of

source

code;

special

handling

or

control

of

the

code,

such

as

adding

specialized

debugging

information;

and

control

of

the

linker

and

library

search

paths.

Options

related

to

performance

and

optimization

are

summarized

at

the

end

of

chapter

“Getting

started

with

optimization”

on

page

41.

For

description,

full

option

syntax,

and

usage

of

each

option,

see

XL

C/C++

for

Mac

OS

X

Compiler

Reference.

Basic

translation

The

options

in

this

grouping

have

the

broadest

applicability

for

basic

translation

of

source

code.

The

subgroups

of

compiler

options

are

generally

concerned

with:

v

Standards

compliance.

v

Compilation

mode

or

control

of

the

compiler

driver.

v

Manipulating

the

source

code

for

code

generation.

v

Generating

specialized

diagnostics.

v

Manipulating

the

compiled

code.

Options

related

to

basic

translation

of

source

code

Standards

compliance

Compilation

mode

or

control

of

compiler

driver

-qgenproto,

-qnogenproto

-qlanglvl

-qlibansi,

-qnolibansi

-#

-qaltivec,

-qnoaltivec

-F

-qpath

-qproto,

-qnoproto

-qsourcetype

Source

code

generation

-qalloca

-qattr,

-qnoattr

-B

-C

-qcpluscmt,

-qnocpluscmt

-D

-qdbcs,

-qnodbcs

-qdigraph,

-qnodigraph

-E

-qignprag

-M

-ma

-qmacpstr,

-qnomacpstr

-qmakedep

-qmbcs,

-qnombcs

-P

-qrwvftable,

-qnorwvftble

-qsmallstack,

-qnosmallstack

-qsyntaxonly

-t

-qtabsize

-qtrigraph,

-qnotrigraph

-U

-qvrsave,

-qnovrsave

-W

Diagnostics

Compiled

code

38

Introduction

and

Installation

Guide

Options

related

to

basic

translation

of

source

code

-qflag

-qinfo,

-qnoinfo

-qmaxerr,

-qnomaxerr

-qphsinfo,

-qnophsinfo

-qprint,

-qnoprint

-qshowinc,

-qnoshowinc

-qsource,

-qnosource

-qsrcmsg,

-qnosrcmsg

-qsuppress,

-qnosuppress

-V

-v

-w

-qwarnfourcharconsts,

-qnowarnfourcharconsts

-qxcall,

-qnoxcall

-qbitfields

-c

-qchars

-qcommon,

-qnocommon

-qdollar,

-qnodollar

-o

-qstatsym,

-qnostatsym

-qupconv,

-qnoupconv

Special

handling

and

control

The

options

in

this

grouping

provide

fine-grain

control

of

the

translation

process

and

have

less

general

applicability

than

basic

translation

options.

The

topics

within

this

grouping

of

compiler

options

are

generally

concerned

with:

v

Data

alignment.

v

Compilation

mode

or

control

of

the

compiler

driver.

v

Manipulating

the

source

code

for

code

generation.

v

Generating

specialized

diagnostics.

v

Manipulating

the

compiled

code.

Options

for

special

handling,

fine

tuning,

and

debugging

Data

alignment

Parallelization

-qalign

-qenum

-qthreaded,

-qnothreaded

Floating-point

and

numerical

features

Sizes

-qlonglong,

-qnolonglong

Rounding

of

floating-point

values

-y

Single-precision

values

None

applicable

for

the

Mac

OS

X

platform.

Other

floating-point

options

-qfloat

-qflttrap,

-qnoflttrap

Debugging

-qcheck,

-qnocheck

-qdbxextra,

-qnodbxextra

-qfullpath,

-qnofullpath

-g

-qhalt

-qinitauto,

-qnoinitauto

-qlinedebug,

-qnolinedebug

-qlist,

-qnolist

-qlistopt,

-qnolistopt

-qsymtab

-qxref,

-qnoxref

Linking

and

library-related

options

The

options

in

this

grouping

are

related

to

the

linking

phase

of

the

compilation

process.

This

grouping

also

contains

options

that

provide

specialized

ways

to

specify

search

paths

for

finding

libraries

and

header

files.

These

compiler

options

are

generally

concerned

with:

v

Placing

string

literals

and

constants.

v

Static

and

dynamic

linking

and

libraries.

v

Specifying

search

directories.

Getting

started

with

compiler

options

39

Options

for

controlling

the

ld

command

Placing

string

literals

and

constants

Static

and

dynamic

linking

and

librairies

-qkeyword,

-qnokeyword

-qro,

-qnoro

-qroconst,

-qnoroconst

-qmkshrobj

-qpic,

-qnopic

-qstdinc,

-qnostdinc

Search

directories

Other

linker

options

-I

-L

-l

(lowercase

el)

-qc_stdinc

-qcomplexgccincl,

-qnocomplexgccincl

-qframeworkdir

-qgcc_c_stdinc

-qidirfirst,

-qnoidirfirst

-r

-qstdframework,

-qnostdframework

-Z

-bundle

-bundle_loader

-framework

-qcrt,

-qnocrt

-qlib,

-qnolib

Options

summary:

C++

compiler

Most

of

the

C

compiler

options

are

available

for

compiling

C++

programs.

The

following

table

presents

additional

compiler

options

specific

to

compiling

C++

programs

and

the

C

options

that

are

not

available

for

compiling

C++

programs

on

the

Mac

OS

X

platform:

Compiler

options

for

C++

programs

C++-specific

options

C-only

options

-+

-qcinc

-qcpp_stdinc

-qeh,

-qnoeh

-qgcc_cpp_stdinc

-qhaltonmsg

-qpriority

-qrtti,

-qnortti

-qstaticinline,

-qnostaticinline

-qtempinc,

-qnotempinc

-qtemplaterecompile,

-qnotemplaterecompile

-qtemplateregistry

-qtempmax

-qtmplparse

-qvftable,

-qnovftable

-qalloca

-qassert,

-qnoassert

-qc_stdinc

-qcpluscmt,

-qnocpluscmt

-qdbxextra,

-qnodbxextra

-qgcc_c_stdinc

-qgenproto,

-qnogenproto

-ma

-qproto,

-qnoproto

-qsrcmsg,

-qnosrcmsg

-qsyntaxonly

-qupconv,

-qnoupconv

40

Introduction

and

Installation

Guide

Getting

started

with

optimization

Simple

compilation

is

a

translation

or

transformation

of

the

source

code

into

an

executable

or

shared

object.

An

optimizing

transformation

is

one

that

gives

your

application

better

overall

performance

at

run

time.

XL

C/C++

for

Mac

OS

X

provides

a

portfolio

of

optimizing

transformations

tailored

to

the

PowerPC

architecture.

These

transformations

can:

v

Reduce

the

number

of

instructions

executed

for

critical

operations.

v

Restructure

the

generated

object

code

to

make

optimal

use

of

the

PowerPC

architecture.

v

Improve

the

usage

of

the

memory

subsystem.

v

Exploit

the

ability

of

the

architecture

to

handle

large

amounts

of

shared

memory

parallelization.

Their

aim

is

to

make

your

application

run

faster.

Significant

performance

improvements

can

be

achieved

with

relatively

little

development

effort

if

you

understand

the

available

controls

that

affect

the

transformation

of

well-written

code.

This

section

describes

some

of

the

optimizations

the

compiler

can

perform

to

help

you

balance

the

trade-offs

among

run-time

performance,

hand-coded

micro-optimizations,

general

readability,

and

overall

portability

of

your

source

code.

The

optimization

techniques

discussed

in

this

chapter

were

developed

and

are

intended

for

applications

that

have

not

been

vectorized.

This

discussion

also

assumes

that

you

have

used

a

profiler

to

identify

the

areas

in

your

code

where

optimization

might

be

appropriate.

Optimizations

are

often

attempted

in

the

later

phases

of

application

development

cycles,

such

as

product

release

builds.

If

possible,

you

should

test

and

debug

your

code

without

optimization

before

attempting

to

optimize

it.

Embarking

on

optimization

should

mean

that

you

have

chosen

the

most

efficient

algorithms

for

your

program

and

that

you

have

implemented

them

correctly.

To

a

large

extent,

compliance

with

language

standards

is

directly

related

to

the

degree

to

which

your

code

can

be

successfully

optimized.

Optimizers

are

the

ultimate

conformance

test!

Optimization

is

controlled

by

compiler

options,

directives,

and

pragmas.

However,

compiler-friendly

programming

idioms

can

be

as

useful

to

performance

as

any

of

the

options

or

directives.

It

is

no

longer

necessary

nor

is

it

recommended

to

excessively

hand-optimize

your

code

(for

example,

manually

unrolling

loops).

Unusual

constructs

can

confuse

the

compiler

(and

other

programmers),

and

make

your

application

difficult

to

optimize

for

new

machines.

The

section

at

end

of

this

chapter

called

″Compiler-Friendly

Programming″

contains

some

suggested

idioms

and

programming

tips

for

writing

good

optimizable

code.

It

should

be

noted

that

not

all

optimizations

are

beneficial

for

all

applications.

A

trade-off

usually

has

to

be

made

between

an

increase

in

compile

time,

accompanied

by

reduced

debugging

capability,

and

the

degree

of

optimization

done

by

the

compiler.

©

Copyright

IBM

Corp.

2003

41

Optimization

levels

The

default

behavior

of

the

compiler

is

to

generate

code

without

optimization

and

without

debug

information.

Full

debugging

capability

with

the

GNU

debugger

is

supported,

and

enabled

by

compiling

with

the

-g

compiler

option.

The

option

-g

can

be

used

with

optimization

options,

but

with

diminished

debugging

capability.

Optimization

levels

are

specified

by

compiler

options.

A

summary

of

the

compiler

behavior

at

each

optimization

level

is

shown

in

the

following

table.

Optimization

levels

Option

Behavior

-qnoopt

Fast

compilation,

full

debugging

support.

-O2

(same

as

-O)

Comprehensive

low-level

optimization;

partial

debugging

support.

-O3

More

extensive

optimization;

some

precision

trade-offs.

-O4

and

-O5

Interprocedural

optimization;

loop

optimization;

automatic

machine

tuning.

Optimizing

for

a

particular

processor

architecture:

target

machine

options

Target

machine

options

are

options

that

instruct

the

compiler

to

generate

code

for

optimal

execution

on

a

given

microprocessor

or

architecture

family.

By

default,

the

compiler

generates

code

that

runs

on

PowerPC

970-based

Mac

systems.

By

selecting

appropriate

target

machine

options,

you

can

optimize

to

suit

the

broadest

possible

selection

of

target

processors,

a

range

of

processors

within

a

given

family

of

processor

architectures,

or

a

specific

processor.

The

following

compiler

options

control

optimizations

affecting

individual

aspects

of

the

target

machine.

Target

machine

options

Option

Behavior

-qarch

Selects

a

family

of

processor

architectures

for

which

instruction

code

should

be

generated.

This

option

restricts

the

instruction

set

generated

to

a

subset

of

that

for

the

PowerPC

architecture.

-qtune

Biases

optimization

toward

execution

on

a

given

microprocessor,

without

implying

anything

about

the

instruction

set

architecture

to

use

as

a

target.

-qcache

Defines

a

specific

cache

or

memory

geometry.

The

defaults

are

determined

through

the

setting

of

-qtune.

Selecting

a

predefined

optimization

level

sets

default

values

for

these

individual

options.

Getting

the

most

out

of

target

machine

options

Try

to

specify

with

-qarch

the

smallest

family

of

machines

possible

that

will

be

expected

to

run

your

code

reasonably

well.

v

-qarch=auto

generates

code

that

may

take

advantage

of

instructions

available

only

on

the

compiling

machine

(or

on

a

system

that

supports

the

equivalent

processor

architecture).

v

The

default

is

-qarch=ppcv.

Try

to

specify

with

-qtune

the

machine

where

performance

should

be

best.

If

you

are

not

sure,

try

-qtune=ppc970,

which

is

the

default

on

Mac

OS

X.

The

-qarch

and

-qtune

options

are

closely

related.

The

acceptable

combinations

of

-qarch

and

-qtune

are

not

problematic

on

the

Mac

OS

X

platform,

unlike

other

platforms.

The

reason

is

that

the

only

suboptions

are

-qtune=auto

and

the

default,

42

Introduction

and

Installation

Guide

-qtune=ppc970.

The

following

table

shows

the

architecture-related

macros

that

are

predefined

by

the

compiler

for

each

-qarch

suboption.

-qarch

Predefined

macro(s)

Default

-qtune

ppcv

_ARCH_PPCV

ppc970

ppc970

_ARCH_PPCV

_ARCH_970

_ARCH_G5

ppc970

g5

_ARCH_G5

_ARCH_PPCV

ppc970

Before

using

the

-qcache

option,

look

at

the

options

sections

of

the

listing

using

-qlist

to

see

if

the

current

settings

are

satisfactory.

The

settings

appear

in

the

listing

itself

when

the

-qlistopt

option

is

specified.

If

you

decide

to

use

-qcache,

use

-qhot

or

-qsmp

along

with

it.

Optimization

level

-O2

At

optimization

level

-O2

(same

as

-O),

the

compiler

performs

comprehensive

low-level

optimization,

which

includes

the

following

techniques.

v

Global

assignment

of

user

variables

to

registers,

also

known

as

graph

coloring

register

allocation.

v

Strength

reduction

and

effective

use

of

addressing

modes.

v

Elimination

of

redundant

instructions,

also

known

as

common

subexpression

elimination

v

Elimination

of

instructions

whose

results

are

unused

or

that

cannot

be

reached

by

a

specified

control

flow,

also

known

as

dead

code

elimination.

v

Value

numbering

(algebraic

simplification).

v

Movement

of

invariant

code

out

of

loops.

v

Compile-time

evaluation

of

constant

expressions,

also

known

as

constant

propagation.

v

Control

flow

simplification.

v

Instruction

scheduling

(reordering)

for

the

target

machine.

v

Loop

unrolling

and

software

pipelining.

Partial

debugging

support

at

optimization

level

-O2

consists

of

the

following

behaviors.

v

Externals

and

parameter

registers

are

visible

at

procedure

boundaries,

which

are

the

entrance

and

exit

to

a

procedure.

You

can

look

at

them

if

you

set

a

breakpoint

at

the

entry

to

a

procedure.

However,

function

inlining

with

-Q

can

eliminate

these

boundaries

and

this

visibility.

This

can

also

happen

when

the

front

end

inlines

very

small

functions.

v

The

snapshot

pragma

creates

additional

program

points

for

storage

visibility

by

flushing

registers

to

memory.

This

allows

you

to

view

and

modify

the

values

of

any

local

or

global

variable,

or

of

any

parameter

in

your

program.

You

can

set

a

breakpoint

at

the

snapshot

and

look

at

that

particular

area

of

storage

in

a

debugger.

Getting

started

with

optimization

43

Optimization

level

-O3

At

optimization

level

-O3,

the

compiler

performs

more

extensive

optimization

than

at

-O2.

The

optimizations

may

be

broadened

or

deepened

in

the

following

ways.

v

Deeper

inner

loop

unrolling.

v

Better

loop

scheduling.

v

Increased

optimization

scope,

typically

to

encompass

a

whole

procedure.

v

Specialized

optimizations

(those

that

might

not

help

all

programs).

v

Optimizations

that

require

large

amounts

of

compile

time

or

space.

v

Implicit

memory

usage

limits

are

eliminated

(equivalent

to

compiling

with

-qmaxmem=-1).

v

Implies

-qnostrict,

which

allows

some

reordering

of

floating-point

computations

and

potential

exceptions.

Due

to

the

implicit

setting

of

-qnostrict,

some

precision

trade-offs

are

made

by

the

compiler,

such

as

the

following:

v

Reordering

of

floating-point

computations.

v

Reordering

or

elimination

of

possible

exceptions

(for

example,

division

by

zero,

overflow).

Getting

the

most

out

of

-O2

and

-O3

Here

is

a

recommended

approach

to

using

optimization

levels

-O2

and

-O3.

v

If

possible,

test

and

debug

your

code

without

optimization

before

using

-O2.

v

Ensure

that

your

code

complies

with

its

language

standard.

Optimizers

are

the

ultimate

conformance

test!

In

C

code,

ensure

that

the

use

of

pointers

follows

the

type

restrictions:

generic

pointers

should

be

char*

or

void*.

Also

check

that

all

shared

variables

and

pointers

to

shared

variables

are

marked

volatile.

v

Compile

as

much

of

your

code

as

possible

with

-O2.

v

If

you

encounter

problems

with

-O2,

consider

using

-qalias=noansi

(C/C++)

rather

than

turning

off

optimization.

v

Next,

use

-O3

on

as

much

code

as

possible.

v

If

you

encounter

problems

or

performance

degradations,

consider

using

-qstrict

or

-qcompact

along

with

-O3

where

necessary.

v

If

you

still

have

problems

with

-O3,

switch

to

-O2

for

a

subset

of

files,

but

consider

using

-qmaxmem=-1

or

-qnostrict,

or

both.

High-order

transformations

(-qhot)

High-order

transformations

are

optimizations

that

specifically

improve

the

performance

of

loops

through

techniques

such

as

interchange,

fusion,

and

unrolling.

The

goals

of

these

loop

optimizations

include:

v

Reducing

the

costs

of

memory

access

through

the

effective

use

of

caches

and

translation

look-aside

buffers.

v

Overlapping

computation

and

memory

access

through

effective

utilization

of

the

data

prefetching

capabilities

provided

by

the

hardware.

v

Improving

the

utilization

of

microprocessor

resources

through

reordering

and

balancing

the

usage

of

instructions

with

complementary

resource

requirements.

The

supported

syntax

is

as

follows:

44

Introduction

and

Installation

Guide

��

nohot

-q

hot

=

arraypad

=n

��

Compiling

with

-qhot

turns

on

loop

optimizations.

Getting

the

most

out

of

-qhot

Try

using

-qhot

along

with

-O2

and

-O3

for

all

of

your

code.

It

is

designed

to

have

a

neutral

effect

when

no

opportunities

for

transformation

exist.

v

If

you

encounter

unacceptably

long

compile

times

(this

can

happen

with

complex

loop

nests)

or

if

your

performance

degrades

with

the

use

of

-qhot,

try

using

-qstrict

or

-qcompact

along

with

-qhot.

v

If

necessary,

deactivate

-qhot

selectively,

allowing

it

to

improve

some

of

your

code.

Interprocedural

analysis

(-qipa)

Interprocedural

analysis

(IPA)

enables

the

compiler

to

optimize

across

different

files

(whole-program

analysis),

and

can

result

in

significant

performance

improvements.

Interprocedural

analysis

can

be

specified

on

the

compile

step

only

or

on

both

compile

and

link

steps

(″whole

program″

mode).

Whole

program

mode

expands

the

scope

of

optimization

to

an

entire

program

unit,

which

can

be

an

executable

or

shared

object.

IPA

is

enabled

by

the

option

-qipa.

The

syntax

for

the

most

commonly

used

suboptions

is

shown

in

the

simplified

syntax

diagram

below.

The

full

option

syntax

is

described

in

the

XL

C/C++

for

Mac

OS

X

Compiler

Reference.

��

noipa

-q

ipa

1

=

level=

0

2

inline=variable

fine_tuning

��

The

effects

of

these

suboptions

or

groups

of

suboptions

are

described

in

the

following

table.

Commonly

used

-qipa

suboptions

Suboption

Behavior

level=0

Program

partitioning

and

simple

interprocedural

optimization,

which

consists

of:

v

Automatic

recognition

of

standard

libraries.

v

Localization

of

statically

bound

variables

and

procedures.

v

Partioning

and

layout

of

procedures

according

to

their

calling

relationships,

which

is

also

referred

to

as

their

call

affinity.

(Procedures

that

call

each

other

frequently

are

located

closer

together

in

memory.)

v

Expansion

of

scope

for

some

optimizations,

notably

register

allocation.

level=1

Inlining

and

global

data

mapping.

Specifically,

v

Procedure

inlining.

v

Partitioning

and

layout

of

static

data

according

to

reference

affinity.

(Data

that

is

frequently

referenced

together

will

be

located

closer

together

in

memory.)

This

is

the

default

level

when

-qipa

is

specified.

Getting

started

with

optimization

45

Commonly

used

-qipa

suboptions

Suboption

Behavior

level=2

Global

alias

analysis,

specialization,

interprocedural

data

flow.

v

Whole-program

alias

analysis.

This

level

includes

the

disambiguation

of

pointer

dereferences

and

indirect

function

calls,

and

the

refinement

of

information

about

the

side

effects

of

a

function

call.

v

Intensive

intraprocedural

optimizations.

This

can

take

the

form

of

value

numbering,

code

propagation

and

simplification,

code

motion

into

conditions

or

out

of

loops,

elimination

of

redundancy.

v

Interprocedural

constant

propagation,

dead

code

elimination,

pointer

analysis,

and

code

motion

across

functions.

v

Procedure

specialization

(cloning).

inline=variable

Provides

precise

user

control

of

inlining.

fine_tuning

Other

values

for

-qipa=

provide

the

ability

to

specify

the

behavior

of

library

code,

tune

program

partitioning,

read

commands

from

a

file,

etc.

Getting

the

most

from

-qipa

It

is

not

necessary

to

compile

everything

with

-qipa,

but

try

to

apply

it

to

as

much

of

your

program

as

possible.

Here

are

some

suggestions.

v

When

specifying

optimization

options

in

a

makefile,

remember

to

use

the

compiler

driver

(such

as

cc

or

xlc)

to

link,

and

to

include

all

compiler

options

on

the

link

step.

v

-qipa

works

when

building

executables

or

shared

objects,

but

always

compile

main

and

exported

functions

with

–qipa.

v

When

compiling

and

linking

separately,

use

-qipa=noobject

on

the

compile

step

for

faster

compilation.

v

Ensure

that

there

is

enough

space

in

/tmp

(at

least

200

MB),

or

use

the

TMPDIR

environment

variable

to

specify

a

different

directory

with

sufficient

free

space.

v

The

level

suboption

is

a

throttle.

Try

varying

it

if

link

time

is

too

long.

Compiling

with

–qipa=level=0

can

be

very

beneficial

for

little

additional

link

time.

v

Look

at

the

generated

code

after

compiling

with

-qlist

or

-qipa=list.

If

too

few

or

too

many

functions

are

inlined,

consider

using

–qipa=inline

or

–qipa=noinline.

To

control

inlining

of

a

specific

function,

use

-Q+

and

-Q-.

v

If

your

application

contains

Fortran

code

that

was

compiled

with

IBM

XL

Fortran,

you

can

also

specify

-qipa

to

compile

that

code

using

the

XL

Fortran

compiler.

Doing

so

produces

additional

optimization

opportunities

at

link

time.

During

linking,

the

-qipa

option

causes

a

complete

reoptimization

of

the

entire

application.

The

-O4

and

-O5

macro

options

Optimization

levels

4

and

5

automatically

activate

several

other

optimization

options.

Optimization

level

4

(-O4)

includes:

v

Everything

from

-O3

v

-qhot

v

-qipa

v

-qarch=auto

v

-qtune=auto

v

-qcache=auto

Optimization

level

5

(-O5)

includes:

v

Everything

from

-O4

v

-qipa=level=2

46

Introduction

and

Installation

Guide

Other

program

behavior

options

The

precision

of

compiler

analyses

is

significantly

affected

by

instructions

that

can

read

or

write

memory.

Aliasing

pertains

to

alternate

names

for

things,

which

in

this

context

are

references

to

memory.

A

reference

to

memory

can

be

direct,

as

in

the

case

of

a

named

symbol,

or

indirect,

as

in

the

case

of

a

pointer

or

dummy

argument.

A

function

call

might

also

reference

memory

indirectly.

Apparent

references

to

memory

that

are

false,

that

is,

that

do

not

actually

reference

some

location

assumed

by

the

compiler,

constitute

barriers

to

compiler

analysis.

ISO

C

and

C++

define

a

type-based

aliasing

rule.

Simplified,

the

rule

is

that

you

cannot

safely

dereference

a

pointer

that

has

been

cast

to

a

type

that

is

not

closely

related

to

the

type

of

what

it

points

at.

The

language

standards

also

define

the

closely

related

types.

Fortran

defines

a

rule

that

dummy

argument

references

may

not

overlap

other

dummy

arguments

or

externally

visible

symbols

during

the

execution

of

a

subprogram.

The

compiler

performs

sophisticated

analyses,

attempting

to

refine

the

set

of

possible

aliases

for

pointer

dereferences

and

calls.

However,

a

limited

scope

and

the

absence

of

values

at

compile

time

constrain

the

effectiveness

of

these

analyses.

Increasing

the

optimization

level,

in

particular,

applying

interprocedural

analysis

(that

is,

compiling

with

-qipa),

can

contribute

to

better

aliasing.

Programs

that

violate

language

aliasing

rules,

as

summarized

above,

commonly

execute

correctly

without

optimization

or

with

low

optimization

levels,

but

can

begin

to

fail

when

higher

levels

of

optimization

are

attempted.

The

reason

is

that

more

aggressive

optimizations

take

better

advantage

of

aliasing

information

and

can

therefore

expose

subtly

incorrect

program

semantics.

Options

related

to

these

issues

are

-qstrict

and

-qalias.

Their

behaviors

are

summarized

in

the

table

below.

Program

behavior

options

Option

Description

-qstrict,

-qnostrict

Allows

the

compiler

to

reorder

floating-point

calculations

and

potentially

excepting

instructions.

A

potentially

excepting

instruction

is

one

that

may

raise

an

interrupt

due

to

erroneous

execution

(for

example,

floating-point

overflow,

a

memory

access

violation).

The

default

is

-qstrict

with

-qnoopt

and

-O2;

-qnostrict

with

-O3,

-O4,

and

-O5.

-qalias

Allows

the

compiler

to

assume

that

certain

variables

do

not

refer

to

overlapping

storage.

The

focus

is

on

overlap

of

storage

accessed

by

pointers

in

C

and

C++

and

on

the

overlap

of

dummy

arguments

and

array

assignments

in

Fortran.

The

full

option

syntax

is

described

in

XL

C/C++

for

Mac

OS

X

Compiler

Reference.

Diagnostic

options

The

following

table

presents

options

that

provide

specialized

information,

which

can

be

helpful

during

the

development

of

optimized

code.

Diagnostic

options

Option

Behavior

-qlist

Instructs

the

compiler

to

emit

an

object

listing.

The

object

listing

includes

hex

and

pseudo-assembly

representations

of

the

generated

instructions

and

text

constants.

Getting

started

with

optimization

47

Diagnostic

options

Option

Behavior

-qreport

Instructs

the

compiler

to

produce

a

report

of

the

loop

transformations

it

performed

and

how

the

program

was

parallelized.

The

option

is

enabled

when

-qhot

or

-qsmp

is

specified.

-qinitauto

Instructs

the

compiler

to

emit

code

that

initializes

all

automatic

variables

to

a

given

value.

-qcheck=nullptr,

-qcheck=bounds,

-qcheck=divzero

Inserts

run-time

checks

(trap

instructions)

for

null

pointer

access,

array

bounds

violations,

or

division

by

zero.

-qipa=list

Instructs

the

compiler

to

emit

an

object

listing.

Profile-directed

feedback

(PDF)

Profile-directed

feedback

is

a

two-stage

compilation

process

that

lets

you

provide

the

compiler

with

data

characteristic

of

typical

program

behavior.

An

instrumented

executable

is

run

in

a

number

of

different

scenarios

for

an

arbitrary

amount

of

time,

producing

a

profile

data

file

as

a

side

effect.

A

second

compilation

using

the

profile

data

produces

an

optimized

executable.

PDF

should

be

used

mainly

on

code

that

has

rarely

executed

conditional

error

handling

or

instrumentation.

The

technique

has

a

neutral

effect

in

the

absence

of

firm

profile

information,

but

is

not

recommended

if

insufficient

or

uncharacteristic

data

is

all

that

is

available.

The

following

diagram

illustrates

the

PDF

process.

Not

all

the

code

in

an

application

needs

to

be

compiled

and

linked

with

-qpdf1

or

-qpdf2

to

benefit

from

this

process.

Compile with
-qpdf1

Compile with
-qpdf2

Source
code

Instrumented
executable

Profile data

Optimized
executable

Sample runs

The

two

stages

of

the

process

are

controlled

by

the

compiler

options

-qpdf1

and

-qpdf2.

Stage

1

is

a

regular

compilation

using

an

arbitrary

set

of

optimization

options

and

-qpdf1,

that

produces

an

executable

or

shared

object

that

can

be

run

in

a

number

of

different

scenarios

for

an

arbitrary

amount

of

time.

Stage

2

is

a

recompilation

using

the

same

options,

except

-qpdf2

is

used

instead

of

-qpdf1,

during

which

the

compiler

consumes

previously

collected

data

for

the

purpose

of

path-biased

optimization.

If

your

application

contains

Fortran

code

compiled

with

IBM

XL

Fortran,

you

can

achieve

additional

PDF

optimization

by

specifying

the

-qpdf1

and

-qpdf2

options,

which

are

also

available

on

the

Fortran

compiler.

If

you

combine

-qpdf1

or

-qpdf2

48

Introduction

and

Installation

Guide

with

-qipa

or

the

-O5

option

(that

is,

if

you

link

with

IPA)

on

all

Fortran

and

C

or

C++

code,

you

will

maximize

the

amount

of

PDF

information

that

is

available

for

optimization.

Other

performance

options

Options

are

provided

to

control

particular

aspects

of

optimization.

They

are

often

enabled

as

a

group

or

given

default

values

when

a

more

general

optimization

option

is

enabled.

Selected

compiler

options

for

optimizing

performance

Option

Description

-qcompact

Chooses

reduction

of

final

code

size

over

a

reduction

in

execution

time

when

a

choice

is

necessary.

Can

be

used

to

constrain

-O3

optimization.

-qsmallstack

Instructs

the

compiler

to

compact

stack

storage.

Doing

so

may

increase

heap

usage.

-qinline

Controls

inlining

of

named

functions.

Can

be

used

at

compile

time,

link

time,

or

both.

When

-qipa

is

used,

-qinline

is

synonymous

with

-qipa=inline.

-qunroll

Independently

controls

loop

unrolling.

Is

implicitly

activated

under

-O3.

2000C++

-qeh

Enables

full

support

for

C++

exceptions.

2000C++

-qnoeh

Informs

the

compiler

that

no

C++

exceptions

will

be

thrown

and

that

cleanup

code

can

be

omitted.

-qunwind

Informs

the

compiler

that

the

stack

can

be

unwound

while

a

routine

in

this

compilation

is

active.

In

other

words,

the

compiler

is

informed

that

the

application

does

not

rely

on

any

program

stack

unwinding

mechanism.

-qnounwind

Informs

the

compiler

that

the

stack

will

not

be

unwound

while

any

routine

in

this

compilation

is

active.

For

C++,

this

option

implies

-qnoeh:

if

-qnounwind

is

enabled

and

an

exception

is

thrown,

the

program

might

crash.

The

option

-qnounwind

enables

optimization

prologue

tailoring,

which

reduces

the

number

of

saves

and

restores

of

nonvolatile

registers.

Floating-point

options

Special

compiler

options

exist

for

handling

floating-point

calculations

efficiently.

By

default,

the

compiler

makes

a

trade-off

to

violate

certain

IEEE

754

floating-point

rules

in

order

to

improve

performance.

For

example,

multiply-add

instructions

are

generated

by

default

because

they

are

faster

and

produce

a

more

precise

result

than

separate

multiply

and

add

instructions.

Floating-point

exceptions,

such

as

overflow

or

division

by

zero,

are

masked

by

default.

If

you

need

to

catch

these

exceptions,

you

have

the

choice

of

enabling

hardware

trapping

of

these

exceptions

or

using

software-based

checking.

The

option

-qflttrap

enables

software-based

checking.

Options

for

handling

floating-point

calcluations

Option

Description

-qfloat

Provides

precise

control

over

the

handling

of

floating-point

calculations.

-qflttrap

Enables

software

checking

of

IEEE

floating-point

exceptions.

This

technique

is

sometimes

more

efficient

than

hardware

checking

because

checks

can

be

executed

less

frequently.

See

XL

C/C++

for

Mac

OS

X

Compiler

Reference

for

more

information.

Getting

started

with

optimization

49

Compiler-friendly

programming

Compiler-friendly

programming

idioms

can

be

as

useful

to

performance

as

any

of

the

options

or

directives.

Here

are

some

suggestions.

General

v

Use

the

xlc

or

xlc_r

invocation

rather

than

cc

or

cc_r,

when

possible.

v

Always

include

string.h

when

doing

string

operations

and

math.h

when

using

the

math

library.

Hand-tuning

v

Do

not

excessively

hand-optimize

your

code.

Unusual

constructs

can

confuse

the

compiler

(and

other

programmers),

and

make

your

application

difficult

to

optimize

for

new

machines.

v

Do

limited

hand

tuning

of

small

functions

by

defining

them

as

inline

in

a

header

file.

v

Avoid

breaking

your

program

into

too

many

small

functions.

If

you

must

use

small

functions,

seriously

consider

using

–qipa.

Variables

v

Avoid

unnecessary

use

of

global

variables

and

pointers.

When

using

them

in

a

loop,

load

them

into

a

local

variable

before

the

loop

and

store

them

back

after.

v

Use

volatile

only

for

truly

shared

variables.

v

Use

const

for

globals,

parameters,

and

functions

wherever

possible.

Conserving

storage

v

Use

register-sized

integers

(long

data

type)

for

scalars.

For

large

arrays

of

integers,

consider

using

one-

or

two-byte

integers

or

bit

fields.

v

Use

the

smallest

floating-point

precision

appropriate

to

your

computation.

v

Avoid

virtual

functions

and

virtual

inheritance

unless

required

for

class

extensibility.

These

language

features

are

costly

in

object

space

and

function

invocation

performance.

Pointers

v

Obey

all

language

aliasing

rules.

Try

to

avoid

using

–qalias=noansi.

v

Use

unions

and

pointer

type

casting

only

when

necessary.

v

Pass

large

class

or

struct

parameters

by

address

or

reference;

pass

everything

else

by

value

where

possible.

Arrays

v

Use

local

variables

wherever

possible

for

loop

index

variables

and

bounds.

Avoid

taking

the

address

of

loop

indices

and

bounds.

v

Keep

array

index

expressions

as

simple

as

possible.

See

XL

C/C++

for

Mac

OS

X

Programming

Tasks

for

more

information.

Options

summary:

optimization

and

performance

This

chapter

appendix

presents

a

summary

of

the

C

compiler

options

that

deal

with

optimization

and

performance

tuning.

The

options

are

grouped

by

type.

Other

C

compiler

options

are

summarized

at

the

end

of

the

chapter

“Getting

started

with

compiler

options”

on

page

29.

For

description,

full

option

syntax,

and

usage,

see

XL

C/C++

for

Mac

OS

X

Compiler

Reference.

Options

related

to

optimization

and

performance

tuning

Optimization

flags

Restricting

optimization

options

50

Introduction

and

Installation

Guide

Options

related

to

optimization

and

performance

tuning

-O

-qoptimize

-qagrrcopy

-qstrict,

-qnostrict

Aliasing

Inlining

functions

-qalias

-qansialias,

-qnoansialias

-qassert,

-qnoassert

-Q

-qinline,

-qnoinline

Side

effects

Code

size

reduction

-qignerrno,

-qnoignerro

-qisolated_call

-qcompact,

-qnocompact

-s

Compile-time

optimization

Loop

optimization

-qmaxmem

-qspill

-qunwind,

-qnounwind

-qhot,

-qnohot

-qreport,

-qnoreport

-qstrict_induction,

-qnostrict_induction

-qunroll,

-qnounroll

Processor

and

architectural

optimization

Whole-program

analysis

-qarch

-qcache

-qtune

-qipa,

-qnoipa

Performance

data

collection

Other

optimization

options

-p

-qpdf1,

-qnopdf1

-qpdf2,

-qnopdf2

-pg

None

applicable

for

the

Mac

OS

X

platform.

Getting

started

with

optimization

51

52

Introduction

and

Installation

Guide

Porting

considerations

Porting

an

existing

AIX

or

other

UNIX®-based

application

to

the

Mac

OS

X

platform

can

involve

more

than

one

area

of

investigation.

You

can

filter

the

diagnostic

messages

emitted

by

the

compiler

to

show

only

those

that

pertain

to

portability

issues.

Compiling

with

the

-qinfo=por

option

enables

this

filter.

Some

areas

related

to

porting

to

the

Mac

OS

X

platform

are:

v

Checking

the

amount

of

reliance

on

GNU

C

and

other

language

extensions.

An

application

that

conforms

strictly

to

its

ISO

language

specification

will

be

maximally

portable.

Currently,

IBM

XL

C/C++

for

Mac

OS

X

supports

a

subset

of

the

GNU

C

and

C++

extensions

to

C

and

C++.

You

may

need

to

revisit

code

that

relies

on

unsupported

extensions.

v

Checking

how

null

pointers

are

dereferenced.

Some

errors

in

the

code

can

go

undetected

on

a

platform

due

to

operating

system-dependent

characteristics.

This

kind

of

error

might

show

up

when

the

program

is

ported

to

another

platform.

Use

the

option

-qcheck=nullptr

to

help

detect

such

conditions

before

porting.

The

lowest

4K

of

memory

(that

is,

addresses

0

through

4K-1)

are

readable

and

contain

zeroes

on

AIX,

but

are

not

readable

on

the

Linux

and

Mac

OS

X

platforms,

and

will

cause

a

segmentation

violation

if

accessed.

For

example,

if

(strcmp(a,

NULL)

==

0)

...

results

in

a

segmentation

violation

on

Linux

and

Mac

OS

X,

but

not

on

AIX.

v

Checking

the

alignment.

The

supported

types

of

alignment

for

AIX,

Linux,

and

Mac

OS

X

are

not

all

the

same.

If

you

are

porting

a

program

that

relies

on

specific

values

for

-qalign

or

#pragma

align,

you

may

need

to

change

the

program.

This

is

especially

true

if

you

use

or

plan

to

use

AltiVec

vector

types

and

programming

constructs,

which

impose

additional

constraints

on

alignment.

v

Ensuring

the

portability

of

data

structures.

If

you

generate

data

with

an

application

on

one

platform

and

read

the

data

with

an

application

on

another

platform,

the

data

may

have

an

alignment

that

is

different

from

that

which

the

reading

application

expects.

To

avoid

this

problem,

make

sure

that

you

use

a

platform-neutral

mechanism

for

the

layout

of

data

in

structures.

For

example,

if

you

enclose

a

structure

with

#pragma

pack(1)

and

#pragma

pack(pop)

pair,

the

alignment

will

be

the

same

on

all

platforms.

v

Using

the

gxlc

or

gxlc++

utility

for

translating

the

commands

in

your

makefiles.

v

On

Linux

or

Mac

OS

X,

if

the

default

global

operator

new

is

called

and

the

allocation

request

cannot

be

fulfilled,

an

exception

of

type

std::bad_alloc

is

thrown.

On

AIX,

the

default

behavior

of

the

global

operator

new

is

to

return

a

null

pointer

if

allocation

fails.

v

Ensuring

the

portability

of

applications

that

use

templates.

The

C++

compiler

provides

two

different

methods

of

working

with

template

files.

Each

method

has

an

associated

compiler

option.

The

-qtemplateregistry

compiler

option

maintains

a

record

of

all

templates.

This

method

is

recommended.

An

older

compiler

option,

-qtempinc,

is

also

provided

for

applications

that

you

port

from

another

platform.

However,

on

the

Mac

OS

X

platform,

the

compiler

option

-qtempinc

is

considered

deprecated.

©

Copyright

IBM

Corp.

2003

53

Features

related

to

GNU

C

and

C++

portability

To

ease

porting

an

application

or

code

developed

with

GNU

C,

XL

C/C++

for

Mac

OS

X

supports

a

subset

of

the

GNU

C

and

C++

language

extensions.

The

tables

in

this

section

list

the

extensions

features

that

are

supported

and

those

for

which

the

syntax

is

accepted

but

the

semantics

ignored.

To

use

supported

extensions

with

your

C

code,

use

the

xlc

or

cc

invocation

commands,

or

specify

one

of

-qlanglvl=extc89,

-qlanglvl=extc99,

or

-qlanglvl=extended.

To

use

these

features

with

your

C++

code,

specify

the

-qlanglvl=extended

option.

In

C++,

all

supported

GNU

C

and

C++

features

are

accepted

by

default.

The

compiler

recognizes

accept/ignore

extensions

as

acceptable

programming

keywords,

but

does

not

support

them.

Compiling

source

code

that

uses

these

extensions

under

a

strict

language

level

(stdc89,

stdc99)

will

result

in

error

messages.

The

GNU

C

and

C++

language

extensions

are

fully

documented

in

the

GNU

manuals.

See

http://gcc.gnu.org/onlinedocs.

GCC

function

attributes

Use

the

keyword

__attribute__

to

specify

special

attributes

when

making

a

function

declaration.

This

keyword

is

followed

by

an

attribute

specification

inside

double

parentheses.

GCC

function

attribute

compatibility

with

XL

C/C++

for

Mac

OS

X

Function

Attribute

Behavior

alias

unsupported

cdecl

accept/ignore

const

supported

constructor

unsupported

destructor

unsupported

dllexport

accept/ignore

dllimport

accept/ignore

eightbit_data

accept/ignore

exception

accept/ignore

format

accept/ignore

format_arg

accept/ignore

function_vector

accept/ignore

interrupt

accept/ignore

interrupt_handler

accept/ignore

longcall

accept/ignore

model

accept/ignore

no_check_memory_usage

accept/ignore

no_instrument_function

accept/ignore

noreturn

supported

54

Introduction

and

Installation

Guide

http://gcc.gnu.org/onlinedocs

GCC

function

attribute

compatibility

with

XL

C/C++

for

Mac

OS

X

Function

Attribute

Behavior

pure

supported

regparm

accept/ignore

section

unsupported

stdcall

accept/ignore

tiny_data

accept/ignore

weak

unsupported

Related

References

v

Function

Attributes

in

XL

C/C++

for

Mac

OS

X

C/C++

Language

Reference

GCC

variable

attributes

Use

the

keyword

__attribute__

to

specify

special

attributes

of

variables

or

structure

fields.

This

keyword

is

followed

by

an

attribute

specification

inside

double

parentheses.

GCC

variable

attribute

compatibility

with

XL

C/C++

for

Mac

OS

X

Variable

Attribute

Behavior

aligned

supported

2000C++

init_priority

supported

mode

supported

model

accept/ignore

nocommon

supported

packed

supported

section

unsupported

transparent_union

accept/ignore

unused

accept/ignore

weak

unsupported

Related

References

v

Variable

Attributes

in

XL

C/C++

for

Mac

OS

X

C/C++

Language

Reference

GNU

C

and

C++

type

attributes

Use

the

keyword

__attribute__

to

specify

special

attributes

of

struct

and

union

types

when

you

define

these

types.

This

keyword

is

followed

by

an

attribute

specification

inside

double

parentheses.

While

type

attributes

are

not

currently

supported

in

XL

C/C++

for

Mac

OS

X,

some

type

attributes

are

accepted

and

ignored

by

the

compiler.

GCC

type

attribute

compatibility

with

XL

C/C++

for

Mac

OS

X

Type

Attribute

Behavior

aligned

accept/ignore

packed

accept/ignore

transparent_union

accept/ignore

Porting

considerations

55

GCC

type

attribute

compatibility

with

XL

C/C++

for

Mac

OS

X

Type

Attribute

Behavior

unused

accept/ignore

GNU

C

and

C++

assertions

Use

assertions

to

test

what

sort

of

computer

or

system

the

compiled

program

will

run

on.

The

assertions

#cpu,

#machine,

and

#system

are

predefined.

You

can

also

define

assertions

with

the

preprocessing

directives

#assert

and

#unassert.

GNU

C

and

C++

assertions

in

XL

C/C++

for

Mac

OS

X

GNU

C

Assertions

Behavior

#assert

supported

#unassert

supported

#cpu

supported

possible

value

is

powerpc

#machine

supported

possible

values

are

powerpc

and

bigendian

#system

supported

possible

value

are

unix

and

posix

Related

References

v

“Language

support,”

on

page

57

Other

extensions

related

to

GNU

C

and

C++

The

following

features

related

to

GNU

C

and

C++

are

supported

under

extended

language

levels

(extc89,

extc99,

extended).

v

Use

directive

#warning

to

cause

the

preprocessor

to

issue

a

warning

and

continue

processing.

v

Use

directive

#include_next

to

specify

inclusion

of

the

next

header

file

in

a

directory

after

the

current

one.

v

Local

labels

can

be

declared

at

the

start

of

each

statement

expression.

v

Use

the

address

of

a

label

as

a

constant

of

type

void*.

v

Use

a

brace-enclosed

compound

statement

inside

of

parentheses

as

an

expression.

v

Refer

to

the

type

of

an

expression

with

the

__typeof__

keyword.

v

Use

compound

expressions,

conditional

expressions,

and

casts

as

lvalues.

v

Use

keyword

__alignof__

to

inquire

about

variable

alignment,

or

the

alignment

usually

required

by

a

type.

v

Use

alternate

spelling

of

these

keywords:

__const__,

__volatile__,

__signed__,

__inline__,

and

__typeof__.

Under

extended

language

levels

(extc89,

extc99,

extended),

XL

C/C++

for

Mac

OS

X

recognizes

the

syntax

of

the

following

features,

but

their

sematics

are

not

supported.

v

The

declaration

of

a

register

variable,

either

global

or

local,

can

suggest

a

preferred

register.

Many

existing

extensions

to

IBM

C/C++

are

also

supported

in

GNU

C

and

C++.

56

Introduction

and

Installation

Guide

Appendix.

Language

support

Syntax

and

semantics

constitute

a

complete

specification

of

a

programming

language,

but

complete

implementations

can

differ

due

to

extensions.

Pragmatic

considerations,

advances

in

programming

techniques,

and

the

shifting

needs

of

modern

programming

environments

are

factors

that

influence

growth

and

change.

XL

C/C++

can

foster

a

programming

style

that

emphasizes

portability.

A

program

that

conforms

strictly

to

its

language

specification

will

have

maximum

portability

among

different

environments.

In

theory,

a

program

that

compiles

correctly

with

one

standards-conforming

compiler

will

compile

and

execute

properly

under

all

other

conforming

compilers,

insofar

as

hardware

differences

permit.

A

program

that

correctly

exploits

the

extensions

to

the

language

that

are

provided

by

the

language

implementation

can

improve

the

efficiency

of

its

object

code.

ISO/IEC

14882:1998

International

Standard

compatibility

The

ISO/IEC

14882:1998

International

Standard

(also

known

as

Standard

C++)

specifies

the

form

and

establishes

the

interpretation

of

programs

written

in

the

C++

programming

language.

This

International

Standard

is

designed

to

promote

the

portability

of

C++

programs

among

a

variety

of

implementations.

For

strict

conformance

to

Standard

C++,

use

the

-qlanglvl=strict98

compiler

option.

ISO/IEC

14882:1998

is

the

first

formal

definition

of

the

C++

language.

ISO/IEC

9899:1990

International

Standard

compatibility

The

ISO/IEC

9899:1990

International

Standard

(also

known

as

C89)

specifies

the

form

and

establishes

the

interpretation

of

programs

written

in

the

C

programming

language.

This

specification

is

designed

to

promote

the

portability

of

C

programs

among

a

variety

of

implementations.

This

Standard

was

amended

and

corrected

by

ISO/IEC

9899/COR1:1994,

ISO/IEC

9899/AMD1:1995,

and

ISO/IEC

9899/COR2:1996.

To

ensure

that

your

source

code

adheres

strictly

to

the

amended

and

corrected

C89

standard,

specify

the

-qlanglvl=stdc89

compiler

option.

ISO/IEC

9899:1999

International

Standard

support

The

ISO/IEC

9899:1999

International

Standard

(also

known

as

C99)

is

an

updated

standard

for

programs

written

in

the

C

programming

language.

It

is

designed

to

enhance

the

capability

of

the

C

language,

provide

clarifications

to

C89,

and

incorporate

technical

corrections.

XL

C/C++

for

Mac

OS

X

supports

many

features

of

this

language

specification.

2000C

The

C

compiler

supports

all

language

features

specified

in

the

C99

Standard.

To

ensure

that

your

source

code

adheres

to

this

set

of

language

features,

use

the

c99

invocation

command.

Note

that

the

Standard

also

specifies

features

in

the

run-time

library.

These

features

may

not

be

supported

in

the

current

run-time

library

and

operating

environment.

The

availability

of

system

header

files

provides

an

indication

of

whether

such

support

exists.

©

Copyright

IBM

Corp.

2003

57

Major

features

in

C99

XL

C/C++

for

Mac

OS

X

implements

all

C99

language

features.

The

following

is

a

table

of

selected

major

features.

ISO/IEC

9899:1999

international

standard

extensions

to

IBM

C

C99

Feature

Related

Reference

restrict

type

qualifier

for

pointers

The

restrict

Type

Qualifier

in

XL

C/C++

for

Mac

OS

X

C/C++

Language

Reference

universal

character

names

The

Unicode

Standard

in

XL

C/C++

for

Mac

OS

X

C/C++

Language

Reference

predefined

identifier

__func__

Predefined

Identifiers

in

XL

C/C++

for

Mac

OS

X

C/C++

Language

Reference

function-like

macros

with

variable

and

empty

arguments

Function-Like

Macros

in

XL

C/C++

for

Mac

OS

X

C/C++

Language

Reference

_Pragma

unary

operator

The

_Pragma

Operator

in

XL

C/C++

for

Mac

OS

X

C/C++

Language

Reference

variable

length

array

Arrays

in

XL

C/C++

for

Mac

OS

X

C/C++

Language

Reference

static

keyword

in

array

index

declaration

Arrays

in

XL

C/C++

for

Mac

OS

X

C/C++

Language

Reference

complex

data

type

Complex

Types

in

XL

C/C++

for

Mac

OS

X

C/C++

Language

Reference

long

long

int

and

unsigned

long

long

int

types

Integer

Variables

in

XL

C/C++

for

Mac

OS

X

C/C++

Language

Reference

hexadecimal

floating-point

constants

Hexadecimal

Floating

Constants

in

XL

C/C++

for

Mac

OS

X

C/C++

Language

Reference

compound

literals

for

aggregate

types

Compound

Literals

in

XL

C/C++

for

Mac

OS

X

C/C++

Language

Reference

designated

initializers

Initializers

in

XL

C/C++

for

Mac

OS

X

C/C++

Language

Reference

C++

style

comments

Comments

in

XL

C/C++

for

Mac

OS

X

C/C++

Language

Reference

implicit

function

declaration

not

permitted

Function

Declarations

in

XL

C/C++

for

Mac

OS

X

C/C++

Language

Reference

mixed

declarations

and

code

for

Statement

in

XL

C/C++

for

Mac

OS

X

C/C++

Language

Reference

_Bool

type

Simple

Type

Specifiers

in

XL

C/C++

for

Mac

OS

X

C/C++

Language

Reference

inline

function

declarations

Inline

Functions

in

XL

C/C++

for

Mac

OS

X

C/C++

Language

Reference

initializers

for

aggregates

Initializing

Arrays

Using

Designated

Initializers

in

XL

C/C++

for

Mac

OS

X

C/C++

Language

Reference

Changes

and

clarifications

of

C89

supported

in

C99

Certain

specifications

in

the

C99

standard

are

based

on

changes

and

clarifications

of

the

C89

standard,

rather

than

on

new

features

of

the

language.

XL

C/C++

for

Mac

OS

X

supports

all

C99

language

features,

including

the

following:

58

Introduction

and

Installation

Guide

v

Flexible

array

members

are

allowed.

The

last

member

of

a

structure

with

two

or

more

members

can

be

declared

without

the

size.

v

Declaring

implicit

int

is

not

supported.

All

declarations

must

have

a

type

specifier.

v

Trailing

commas

are

allowed

in

enumeration

specifiers.

v

Duplicate

type

qualifiers

are

accepted

and

ignored,

unless

explicitly

specified

otherwise.

v

A

diagnostic

message

will

be

issued

if

a

required

expression

is

missing

from

the

return

statement.

v

Constant

expressions

evaluated

during

preprocessing

now

use

long

long

and

unsigned

long

long

data

types.

v

Empty

macro

arguments

are

allowed

in

function-like

macros.

v

The

maximum

value

of

#line

has

increased

to

2

147

483

647.

C99

features

in

XL

C/C++

Some

features

of

the

ISO/IEC

9899:1999

International

Standard

(C99)

are

also

implemented

in

C++.

These

extensions

are

available

under

the

-qlanglvl=extended

compiler

option.

ISO/IEC

9899:1999

international

standard

extensions

to

IBM

C++

C99

Feature

Reference

restrict

type

qualifier

for

pointers

The

restrict

Type

Qualifier

in

XL

C/C++

for

Mac

OS

X

C/C++

Language

Reference

predefined

identifier

__func__

Predefined

Identifiers

in

XL

C/C++

for

Mac

OS

X

C/C++

Language

Reference

function-like

macros

with

variable

and

empty

arguments

Function-Like

Macros

in

XL

C/C++

for

Mac

OS

X

C/C++

Language

Reference

_Pragma

unary

operator

The

_Pragma

Operator

in

XL

C/C++

for

Mac

OS

X

C/C++

Language

Reference

Enhanced

language

level

support

The

-qlanglvl

compiler

option

is

used

to

specify

the

supported

language

level,

and

therefore

affects

the

way

your

code

is

compiled.

You

can

also

specify

the

language

level

implicitly

by

using

different

compiler

invocation

commands.

In

general,

a

valid

program

that

compiles

and

runs

correctly

under

a

standard

language

level

should

continue

to

compile

correctly

and

run

to

produce

the

same

result

with

the

orthogonal

extensions

enabled.

For

example,

to

compile

C

programs

so

that

they

comply

strictly

with

the

ISO/IEC

9899:1990

International

Standard

(C89),

you

need

to

specify

-qlanglvl=stdc89.

The

stdc89

suboption

instructs

the

compiler

to

strictly

enforce

the

standard,

and

not

to

allow

any

language

extensions.

(The

c89

compiler

invocation

command

specifies

this

language

level

implicitly.)

To

compile

C++

programs

so

that

they

conform

strictly

to

ISO/IEC

14882:1998

International

Standard

(Standard

C++),

specify

-qlanglvl=strict98.

You

can

also

use

extensions

to

the

standard

language

levels.

Extensions

that

do

not

interfere

with

the

standard

features

are

called

orthogonal

extensions.

For

example,

when

you

compile

C

programs,

you

can

enable

extensions

that

are

orthogonal

to

C89

by

specifying

-qlanglvl=extc89.

Appendix.

Language

support

59

Most

of

the

language

features

described

in

the

ISO/IEC

9899:1999

International

Standard

(C99)

are

considered

orthogonal

extensions

to

C89.

When

you

compile

C++

programs,

you

can

enable

the

use

of

orthogonal

extensions

by

specifying

-qlanglvl=extended.

Non-orthogonal

extensions,

on

the

other

hand,

can

interfere

or

conflict

with

aspects

of

the

language

as

described

in

one

of

the

international

standards.

Acceptance

of

these

extensions

must

be

explicitly

enabled

by

a

particular

compiler

option.

For

example,

to

support

AltiVec

vector

types

and

programming

constructs,

the

C

compiler

requires

non-orthogonal

extensions

to

the

language,

which

are

enabled

by

the

option

-qaltivec.

Reliance

on

non-orthogonal

extensions

reduces

the

ease

with

which

your

application

can

be

ported

to

different

environments.

The

main

suboptions

for

the

-qlanglvl

option

are

listed

below.

Selected

-qlanglvl

suboptions

-qlanglvl

Suboption

Suboption

Description

-qlanglvl=stdc99

2000C

Specifies

strict

conformance

to

the

C99

standard.

-qlanglvl=stdc89

2000C

Specifies

strict

conformance

to

the

C89

standard.

-qlanglvl=strict98

2000C++

Specifies

strict

conformance

to

Standard

C++.

Identical

to

-qlanglvl=ansi.

-qlanglvl=extc99

2000C

Enables

all

extensions

orthogonal

to

C99.

-qlanglvl=extc89

2000C

Enables

all

extensions

orthogonal

to

C89.

-qlanglvl=extended

2000C

Enables

all

extensions

orthogonal

to

C89

and

specifies

the

-qupconv

compiler

option.

2000C++

Enables

all

the

orthogonal

extensions

on

top

of

Standard

C++.

Related

References

v

langlvl

in

XL

C/C++

for

Mac

OS

X

Compiler

Reference

v

upconv

in

XL

C/C++

for

Mac

OS

X

Compiler

Reference

v

longlong

in

XL

C/C++

for

Mac

OS

X

Compiler

Reference

v

The

IBM

Language

Extensions

in

XL

C/C++

for

Mac

OS

X

C/C++

Language

Reference

v

The

IBM

C

Language

Extensions

in

XL

C/C++

for

Mac

OS

X

C/C++

Language

Reference

v

The

IBM

C++

Language

Extensions

in

XL

C/C++

for

Mac

OS

X

C/C++

Language

Reference

60

Introduction

and

Installation

Guide

Notices

This

information

was

developed

for

products

and

services

offered

in

the

U.S.A.

IBM

may

not

offer

the

products,

services,

or

features

discussed

in

this

document

in

other

countries.

Consult

your

local

IBM

representative

for

information

on

the

products

and

services

currently

available

in

your

area.

Any

reference

to

an

IBM

product,

program,

or

service

is

not

intended

to

state

or

imply

that

only

that

IBM

product,

program,

or

service

may

be

used.

Any

functionally

equivalent

product,

program,

or

service

that

does

not

infringe

any

IBM

intellectual

property

right

may

be

used

instead.

However,

it

is

the

user’s

responsibility

to

evaluate

and

verify

the

operation

of

any

non-IBM

product,

program,

or

service.

IBM

may

have

patents

or

pending

patent

applications

covering

subject

matter

described

in

this

document.

The

furnishing

of

this

document

does

not

give

you

any

license

to

these

patents.

You

can

send

license

inquiries,

in

writing,

to:

IBM

Director

of

Licensing

IBM

Corporation

North

Castle

Drive

Armonk,

NY

10504-1785

U.S.A.

For

license

inquiries

regarding

double-byte

(DBCS)

information,

contact

the

IBM

Intellectual

Property

Department

in

your

country

or

send

inquiries,

in

writing,

to:

IBM

World

Trade

Asia

Corporation

Licensing

2-31

Roppongi

3-chome,

Minato-ku

Tokyo

106,

Japan

The

following

paragraph

does

not

apply

to

the

United

Kingdom

or

any

other

country

where

such

provisions

are

inconsistent

with

local

law:

INTERNATIONAL

BUSINESS

MACHINES

CORPORATION

PROVIDES

THIS

PUBLICATION

″AS

IS″

WITHOUT

WARRANTY

OF

ANY

KIND,

EITHER

EXPRESS

OR

IMPLIED,

INCLUDING,

BUT

NOT

LIMITED

TO,

THE

IMPLIED

WARRANTIES

OF

NON-INFRINGEMENT,

MERCHANTABILITY

OR

FITNESS

FOR

A

PARTICULAR

PURPOSE.

Some

states

do

not

allow

disclaimer

of

express

or

implied

warranties

in

certain

transactions,

therefore,

this

statement

may

not

apply

to

you.

This

information

could

include

technical

inaccuracies

or

typographical

errors.

Changes

are

periodically

made

to

the

information

herein;

these

changes

will

be

incorporated

in

new

editions

of

the

publication.

IBM

may

make

improvements

and/or

changes

in

the

product(s)

and/or

the

program(s)

described

in

this

publication

at

any

time

without

notice.

Any

references

in

this

information

to

non-IBM

Web

sites

are

provided

for

convenience

only

and

do

not

in

any

manner

serve

as

an

endorsement

of

those

Web

sites.

The

materials

at

those

Web

sites

are

not

part

of

the

materials

for

this

IBM

product

and

use

of

those

Web

sites

is

at

your

own

risk.

IBM

may

use

or

distribute

any

of

the

information

you

supply

in

any

way

it

believes

appropriate

without

incurring

any

obligation

to

you.

©

Copyright

IBM

Corp.

2003

61

Licensees

of

this

program

who

wish

to

have

information

about

it

for

the

purpose

of

enabling:

(i)

the

exchange

of

information

between

independently

created

programs

and

other

programs

(including

this

one)

and

(ii)

the

mutual

use

of

the

information

which

has

been

exchanged,

should

contact:

Lab

Director

IBM

Canada

Ltd.

Laboratory

B3/KB7/8200/MKM

8200

Warden

Avenue

Markham,

Ontario,

Canada

L6G

1C7

Such

information

may

be

available,

subject

to

appropriate

terms

and

conditions,

including

in

some

cases,

payment

of

a

fee.

The

licensed

program

described

in

this

information

and

all

licensed

material

available

for

it

are

provided

by

IBM

under

terms

of

the

IBM

Customer

Agreement,

IBM

International

Program

License

Agreement,

or

any

equivalent

agreement

between

us.

Information

concerning

non-IBM

products

was

obtained

from

the

suppliers

of

those

products,

their

published

announcements

or

other

publicly

available

sources.

IBM

has

not

tested

those

products

and

cannot

confirm

the

accuracy

of

performance,

compatibility

or

any

other

claims

related

to

non-IBM

products.

Questions

on

the

capabilities

of

non-IBM

products

should

be

addressed

to

the

suppliers

of

those

products.

This

information

contains

examples

of

data

and

reports

used

in

daily

business

operations.

To

illustrate

them

as

completely

as

possible,

the

examples

may

include

the

names

of

individuals,

companies,

brands,

and

products.

All

of

these

names

are

fictitious

and

any

similarity

to

the

names

and

addresses

used

by

an

actual

business

enterprise

is

entirely

coincidental.

COPYRIGHT

LICENSE:

This

information

contains

sample

application

programs

in

source

language,

which

illustrates

programming

techniques

on

various

operating

platforms.

You

may

copy,

modify,

and

distribute

these

sample

programs

in

any

form

without

payment

to

IBM,

for

the

purposes

of

developing,

using,

marketing

or

distributing

application

programs

conforming

to

the

application

programming

interface

for

the

operating

platform

for

which

the

sample

programs

are

written.

These

examples

have

not

been

thoroughly

tested

under

all

conditions.

IBM,

therefore,

cannot

guarantee

or

imply

reliability,

serviceability,

or

function

of

these

programs.

You

may

copy,

modify,

and

distribute

these

sample

programs

in

any

form

without

payment

to

IBM

for

the

purposes

of

developing,

using,

marketing,

or

distributing

application

programs

conforming

to

IBM’s

application

programming

interfaces.

Each

copy

or

any

portion

of

these

sample

programs

or

any

derivative

work,

must

include

a

copyright

notice

as

follows:

©

(your

company

name)

(year).

Portions

of

this

code

are

derived

from

IBM

Corp.

Sample

Programs.

©

Copyright

IBM

Corp.

1998,

2003.

All

rights

reserved.

If

you

are

viewing

this

information

softcopy,

the

photographs

and

color

illustrations

may

not

appear.

62

Introduction

and

Installation

Guide

Programming

Interface

Information

Programming

interface

information

is

intended

to

help

you

create

application

software

using

this

program.

General-use

programming

interfaces

allow

the

customer

to

write

application

software

that

obtains

the

services

of

this

program’s

tools.

However,

this

information

may

also

contain

diagnosis,

modification,

and

tuning

information.

Diagnosis,

modification,

and

tuning

information

is

provided

to

help

you

debug

your

application

software.

Warning:

Do

not

use

this

diagnosis,

modification,

and

tuning

information

as

a

programming

interface

because

it

is

subject

to

change.

Trademarks

and

Service

Marks

The

following

terms

are

trademarks

of

International

Business

Machines

Corporation

in

the

United

States,

or

other

countries,

or

both:

AIX

IBM

POWER

PowerPC

pSeries

VisualAge

UNIX

is

a

registered

trademark

of

The

Open

Group

in

the

United

States

and

other

countries.

Other

company,

product,

and

service

names,

may

be

trademarks

or

service

marks

of

others.

Industry

Standards

The

following

standards

are

supported:

v

The

C

language

is

consistent

with

the

International

Standard

C

(ANSI/ISO-IEC

9899–1990

[1992]).

This

standard

has

officially

replaced

American

National

Standard

for

Information

Systems-Programming

Language

C

(X3.159–1989)

and

is

technically

equivalent

to

the

ANSI

C

standard.

The

compiler

supports

the

changes

adopted

into

the

C

Standard

by

ISO/IEC

9899:1990/Amendment

1:1994.

v

The

C

language

is

consistent

with

the

International

Standard

for

Information

Systems-Programming

Language

C

(ISO/IEC

9899–1999

(E)).

v

The

C++

language

is

consistent

with

the

International

Standard

for

Information

Systems-Programming

Language

C++

(ISO/IEC

14882:1998).

Notices

63

64

Introduction

and

Installation

Guide

����

Program

Number:

5724–G12

SC09-7859-00

	Contents
	About this book
	Highlighting conventions
	How to read the syntax diagrams

	XL C/C++ for Mac OS X Overview
	Libraries
	Utilities and commands
	Documentation and online help

	Installing XL C/C++ for Mac OS X
	System requirements
	Prerequisite tasks and conditions
	Installation procedures for XL C/C++ for Mac OS X
	Installing through the GUI
	Command-line installation
	Enabling the compiler man pages
	Viewing the product documentation

	Configure the compiler
	Setting the correct NLSPATH
	Uninstalling XL C/C++ for Mac OS X
	Testing the installation
	Building Hello World in C and C++
	Hello World with vector programming

	Using the compiler for the first time

	Customizing the compilation environment
	Environment variables
	Create symbolic links for the PATH
	Ensuring the correct NLSPATH

	Include files
	Configuration files
	The vacpp_configure utility

	Command-line options
	Using XL C/C++ with Xcode and Project Builder
	Configure the Xcode IDE
	Using Xcode with XL C/C++
	Hints and tips for using XL C/C++ with the Xcode IDE

	Using Project Builder with XL C/C++
	Setting the CC and CPLUSPLUS variables
	Hints and tips for using XL C/C++ with Project Builder

	Controlling the compilation process
	Invoking the compiler
	Types of input and output files
	Default behavior

	Getting started with compiler options
	Compiler messages
	Return codes
	Compiler message format

	Platform-specific options
	Reusing GNU C and C++ compiler options with gxlc and gxlc++
	gxlc and gxlc++ syntax
	GNU C and C++ to XL C/C++ option mapping
	Configuring the option mapping

	Options summary: C compiler
	Basic translation
	Special handling and control
	Linking and library-related options

	Options summary: C++ compiler

	Getting started with optimization
	Optimization levels
	Optimizing for a particular processor architecture: target machine options
	Getting the most out of target machine options

	Optimization level -O2
	Optimization level -O3
	Getting the most out of -O2 and -O3

	High-order transformations (-qhot)
	Getting the most out of -qhot

	Interprocedural analysis (-qipa)
	Getting the most from -qipa

	The -O4 and -O5 macro options
	Other program behavior options
	Diagnostic options
	Profile-directed feedback (PDF)
	Other performance options
	Floating-point options
	Compiler-friendly programming
	Options summary: optimization and performance

	Porting considerations
	Features related to GNU C and C++ portability
	GCC function attributes
	GCC variable attributes
	GNU C and C++ type attributes
	GNU C and C++ assertions
	Other extensions related to GNU C and C++

	Appendix. Language support
	ISO/IEC 14882:1998 International Standard compatibility
	ISO/IEC 9899:1990 International Standard compatibility
	ISO/IEC 9899:1999 International Standard support
	Major features in C99
	Changes and clarifications of C89 supported in C99
	C99 features in XL C/C++

	Enhanced language level support

	Notices
	Programming Interface Information
	Trademarks and Service Marks
	Industry Standards

